如圖,已知六棱錐PABCDEF的底面是正六邊形,平面ABC,,給出下列結(jié)論:①;②平面平面PBC;③直線平面PAE;④;⑤直線PD與平面PAB所成角的余弦值為。
其中正確的有                (把所有正確的序號(hào)都填上)。

①④⑤

解析試題分析:解:對(duì)于①、由PA⊥平面ABC,AE?平面ABC,得PA⊥AE,又由正六邊形的性質(zhì)得AE⊥AB,PA∩AB=A,得AE⊥平面PAB,又PB?平面PAB,∴AE⊥PB,①正確;
對(duì)于②、又平面PAB⊥平面ABC,所以平面ABC⊥平面PBC不成立,②錯(cuò);
對(duì)于③、由正六邊形的性質(zhì)得BC∥AD,又AD?平面PAD,∴BC∥平面PAD,∴直線BC∥平面PAE也不成立,③錯(cuò);
對(duì)于④、在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,∴④正確.
⑤直線PD與平面PAB所成角的余弦值為,成立。
故答案為:①④⑤
考點(diǎn):空間中的線面關(guān)系,正六邊形的性質(zhì)
點(diǎn)評(píng):本小題考查空間中的線面關(guān)系,正六邊形的性質(zhì)等基礎(chǔ)知識(shí),考查空間想象能力和思維能力,以及空間想象能力、推理論證能力和運(yùn)算求解能力

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

在棱長為1的正方體中,的中點(diǎn),點(diǎn)為側(cè)面內(nèi)一動(dòng)點(diǎn)(含邊界),若動(dòng)點(diǎn)始終滿足,則動(dòng)點(diǎn)的軌跡的長度為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖是正方體的平面展開圖,在這個(gè)正方體中,①平面;②平面;③平面平面;④平面平面.以上四個(gè)命題中,正確命題的序號(hào)是            。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

是直線,、是平面,,向量上,向量上,,,則所成二面角中較小的一個(gè)余弦值為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

正四棱錐P-ABCD的所有棱長都相等,則側(cè)棱與底面所成的角為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知平面和直線,給出下列條件:①;②;③;④;⑤.則使成立的充分條件是      .(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知正三棱柱ABC-A1B1C1的各條棱長都相等,M是側(cè)棱CC1的中點(diǎn),則異面直線AB1和BM所成的角的大小是______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖,直四棱柱的底面是邊長為1的正方形,側(cè)棱長,則異面直線的夾角大小等于___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若正四棱柱的底面邊長為2,高為4,則異面直線所成角的正切值是_________________.

查看答案和解析>>

同步練習(xí)冊(cè)答案