如圖,直四棱柱的底面是邊長為1的正方形,側(cè)棱長,則異面直線的夾角大小等于___________.

解析試題分析:∵∥AB,∴異面直線的夾角為直線AB與的夾角,連接,在中,,∴即異面直線的夾角大小等于
考點:本題考查了異面直線的求法
點評:利用平移法把異面直線的夾角轉(zhuǎn)化為三角形中的夾角問題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖,在三棱錐中,,且,平面,過作截面分別交,且二面角的大小為,則截面面積的最小值為      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖,已知六棱錐PABCDEF的底面是正六邊形,平面ABC,,給出下列結(jié)論:①;②平面平面PBC;③直線平面PAE;④;⑤直線PD與平面PAB所成角的余弦值為
其中正確的有                (把所有正確的序號都填上)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖,矩形與矩形所在的平面互相垂直,將沿翻折,翻折后的點E恰與BC上的點P重合.設(shè),,,則當(dāng)__時,有最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如果平面的一條斜線和它在這個平面上的射影的方向向量分別是那么這條斜線與平面所成的角是 ____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

正四面體S—ABC中,E為SA的中點,F(xiàn)為的中心,則直線EF與平面ABC所成的角的正切值是                 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

三棱柱ABC-A1B1C1中,底面邊長和側(cè)棱長都相等,∠BAA1=∠CAA1=60°,則異面直線AB1與BC1所成角的余弦值為________. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

給出下列命題:
①經(jīng)過空間一點一定可作一條直線與兩異面直線都垂直;②經(jīng)過空間一點一定可作一平面與兩異面直線都平行;③已知平面,直線,若,則;④四個側(cè)面兩兩全等的四棱柱為直四棱柱;⑤底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐.其中正確命題的序號是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖,點P在正方體的面對角線上運動,則下列四個命題:①三棱錐的體積不變; ②∥面; ③; ④面。其中正確的命題的序號是_______________(寫出所有你認(rèn)為正確結(jié)論的序號)

查看答案和解析>>

同步練習(xí)冊答案