4.某營養(yǎng)師要為某個兒童預訂午餐和晚餐,已知一個單位的午餐含12個單位的碳水化合物,6個單位的蛋白質和6個單位的維生素C;一個單位的晚餐含8個單位的碳水化合物,6個單位的蛋白質和10個單位的維生素C.另外,該兒童這兩餐需要的營養(yǎng)中至少含64個單位的碳水化合物,42個單位的蛋白質和54個單位的維生素C.如果一個單位的午餐、晚餐的費用分別是2.5元和4元,分別用x,y表示為該兒童預訂的午餐和晚餐的單位數(shù).
(Ⅰ)用x,y列出滿足營養(yǎng)要求的數(shù)學關系式,并畫出相應的平面區(qū)域;
(Ⅱ)問應當為該兒童分別預訂多少個單位的午餐和晚餐,才能滿足上述的營養(yǎng)要求,并且花費最少?

分析 利用線性規(guī)劃的思想方法解決某些實際問題屬于直線方程的一個應用.本題主要考查找出約束條件與目標函數(shù),準確地描畫可行域,再利用圖形直線求得滿足題設的最優(yōu)解.

解答 解:(Ⅰ)設為該兒童分別預訂x個單位的午餐和y個單位的晚餐,
設費用為z,則z=2.5x+4y,
由題意知約束條件為:$\left\{\begin{array}{l}{12x+8y≥64}\\{6x+6y≥42}\\{6x+10y≥54}\\{x>0,y>0}\end{array}\right.$畫出可行域如圖:
(Ⅱ)變換目標函數(shù):y=-$\frac{5}{8}$x+$\frac{z}{4}$
當目標函數(shù)過點A,
即直線6x+6y=42與6x+10y=54
的交點(4,3)時,z取得最小值為:10+12=22
即要滿足營養(yǎng)要求,并且花費最少,
應當為兒童分別預訂4個單位的午餐和3個單位的晚餐.

點評 用圖解法解決線性規(guī)劃問題時,分析題目的已知條件,找出約束條件和目標函數(shù)是關鍵,可先將題目中的量分類、列出表格,理清頭緒,然后列出不等式組(方程組)尋求約束條件,并就題目所述找出目標函數(shù).然后將可行域各角點的值一一代入,最后比較,即可得到目標函數(shù)的最優(yōu)解.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.等差數(shù)列{an}的前n項和為Sn,且a3+a5=a4+7,S10=100.
(1)求{an}的通項公式;
(2)求滿足不等式Sn<3an-2的n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設復數(shù)z=$\frac{(1+i)^{3}}{(1-i)^{2}}$,則$\overline{z}$=( 。
A.1+iB.-1+iC.1-iD.-1-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=(x2-x)ex
(1)求y=f(x)在點(1,f(1))處的切線方程y=g(x),并證明f(x)≥g(x)
(2)若方程f(x)=m(m∈R)有兩個正實數(shù)根x1,x2,求證:|x1-x2|<$\frac{m}{e}$+m+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設a=($\frac{3}{4}$)0.5,b=($\frac{4}{3}$)0.4,c=log${\;}_{\frac{3}{4}}$(log34),則( 。
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{sin(\frac{π}{4}x)2≤x≤10}\end{array}\right.$,若存在實數(shù)x1,x2,x3,x4滿足f(x1)=f(x2)=f(x3)=f(x4),且x1<x2<x3<x4,則$\frac{({x}_{3}-1)•({x}_{4}-1)}{{x}_{1}•{x}_{2}}$的取值范圍是( 。
A.(15,25)B.(20,32)C.(8,24)D.(9,21)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.在△ABC中,內角A,B,C的對邊分別為a,b,c,a=3$\sqrt{2}$,b=2$\sqrt{3}$,cosC=$\frac{1}{3}$,則△ABC的面積為( 。
A.3$\sqrt{3}$B.2$\sqrt{3}$C.4$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若對任意的x∈D,均有g(x)≤f(x)≤h(x)成立,則稱函數(shù)f(x)為函數(shù)g(x)到函數(shù)h(x)在區(qū)間D上的“任性函數(shù)”.已知函數(shù)f(x)=kx,g(x)=x2-2x,h(x)=(x+1)(lnx+1),且f(x)是g(x)到h(x)在區(qū)間[1,e]上的“任性函數(shù)”,則實數(shù)k的取值范圍是[e-2,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.定積分$\int_0^π{(sinx-cosx})dx$的值為( 。
A.-1B.-2C.2D.π

查看答案和解析>>

同步練習冊答案