9.如圖,AB為半圓O的直徑,D為弧BC的中點(diǎn),E為BC的中點(diǎn),求證:AB•BC=2AD•BD.

分析 證明△ABD∽△BDE,即可證明結(jié)論.

解答 證明:因?yàn)镈為弧BC的中點(diǎn),所以∠DBC=∠DAB,DC=DB,
因?yàn)锳B為半圓O的直徑,所以∠ADB=90°,
又E為BC的中點(diǎn),所以EC=EB,所以DE⊥BC,
所以△ABD∽△BDE,
所以$\frac{AB}{AD}=\frac{BD}{BE}=\frac{2BD}{BC}$,所以AB•BC=2AD•BD.…(10分)

點(diǎn)評(píng) 本題考查三角形相似的判定與性質(zhì),考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列四個(gè)函數(shù)中,在其定義域上既是奇函數(shù)又是單調(diào)遞增函數(shù)的是( 。
A.y=exB.y=sinxC.$y=\sqrt{x}$D.y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖所示,點(diǎn)D 在線段AB 上,∠CAD=30°,∠CDB=50°.給出下列三組條件(給出線段的長(zhǎng)度):
①AD,DB
②AC,DB
③CD,DB
其中,能使△ABC 唯一確定的條件的序號(hào)為①②③.(寫出所有所和要求的條件的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知圓錐的底面直徑與高都是2,則該圓錐的側(cè)面積為$\sqrt{5}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{sinx,x<1}\\{{x^3}-9{x^2}+25x+a,x≥1}\end{array}}\right.$,若函數(shù)f(x)的圖象與直線y=x有三個(gè)不同的公共點(diǎn),則實(shí)數(shù)a的取值集合為{-20,-16}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某四棱錐的三視圖如圖所示,該四棱錐的四個(gè)側(cè)面的面積中最大的是( 。
A.3B.$2\sqrt{5}$C.6D.$3\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.橢圓$\frac{x^2}{12}+\frac{y^2}{4}=1$的左、右焦點(diǎn)分別為F1,F(xiàn)2,過焦點(diǎn)F1的直線交該橢圓于A,B兩點(diǎn),若△ABF2的內(nèi)切圓面積為π,A,B兩點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2),則|y1-y2|的值為$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.定義在區(qū)間(-1,1)上的函數(shù)f(x)滿足:對(duì)任意的x,y∈(-1,1),都有f(x)+f(y)=f($\frac{x+y}{1+xy}$),且當(dāng)x∈(-1,0),有f(x)>0.
(1)判斷f(x)在區(qū)間(-1,1)上的奇偶性,并給出理由;
(2)判斷f(x)在區(qū)間(-1,1)上的單調(diào)性,并給出證明;
(3)已知f($\frac{1}{2}$)=1,解不等式f(2x+1)+2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.曲線f(x)=$\frac{1}{3}$x3-2在點(diǎn)(-1,f(-1))處切線的斜率為( 。
A.$\sqrt{3}$B.1C.-1D.-$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案