【題目】已知函數(shù)。
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍。
【答案】(1) 函數(shù)f(x)的單調(diào)遞減區(qū)間是(0, );單調(diào)遞增區(qū)間是(,+∞);(2) a≤-.
【解析】試題分析:(Ⅰ)先求出函數(shù)的導(dǎo)數(shù),再通過討論a的范圍,從而求出其單調(diào)區(qū)間,(Ⅱ)由g(x)=+x2+2aln x得g′(x)=-+2x+,建立新函數(shù),求出其最小值,解出即可.
試題解析:
(Ⅰ)函數(shù)f(x)的定義域為(0,+∞).
①當(dāng)a≥0時,f′(x)>0,f(x)的單調(diào)遞增區(qū)間為(0,+∞);
②當(dāng)a<0時,f′(x)=.
當(dāng)x變化時,f′(x),f(x)的變化情況如下:
x | (0, ) | (,+∞) | |
f′(x) | - | 0 | + |
f(x) | 極小值 |
由上表可知,函數(shù)f(x)的單調(diào)遞減區(qū)間是(0, );單調(diào)遞增區(qū)間是(,+∞).
(Ⅱ )由g(x)=+x2+2aln x,得g′(x)=-+2x+,
由已知函數(shù)g(x)為[1,2]上的單調(diào)減函數(shù),則g′(x)≤0在[1,2]上恒成立,
即-+2x+≤0在[1,2]上恒成立.即a≤-x2在[1,2]上恒成立.
令,則h′(x)=--2x=-(+2x)
,所以h(x)在[1,2]上為減函數(shù),
h(x)min=h(2)=-, 所以a≤-.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在區(qū)間上有最大值4 和最小值1,設(shè).
(1)求的值;
(2)若不等式在區(qū)間上有解,求實數(shù)的取值范圍;
(3)若有三個不同的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的極小值;
(Ⅱ)設(shè)定義在上的函數(shù)在點處的切線方程為:,當(dāng)時,若在內(nèi)恒成立,則稱為函數(shù)的“轉(zhuǎn)點”.當(dāng)時,試問函數(shù)是否存在“轉(zhuǎn)點”?若存在,求出轉(zhuǎn)點的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是等差數(shù)列,其前項和為,數(shù)列是公比大于0的等比數(shù)列,且, , .
(Ⅰ)求數(shù)列和的通項公式;
(Ⅱ)令,求數(shù)列的前項和為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在投擲骰子試驗中,根據(jù)向上的點數(shù)可以定義許多事件,如:A={出現(xiàn)1點},B={出現(xiàn)3點或4點},C={出現(xiàn)的點數(shù)是奇數(shù)},D={出現(xiàn)的點數(shù)是偶數(shù)}.
(1)說明以上4個事件的關(guān)系.
(2)求兩兩運算的結(jié)果.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉行漢字聽寫比賽,為了了解本次比賽成績情況,從得分不低于50分的試卷中隨機抽取100名學(xué)生的成績(得分均為整數(shù),滿分100分)進行統(tǒng)計,請根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | [50,60) | 5 | 0.05 |
第2組 | [60,70) | 0.35 | |
第3組 | [70,80) | 30 | |
第4組 | [80,90) | 20 | 0.20 |
第5組 | [90,100] | 10 | 0.10 |
合計 | 100 | 1.00 |
(Ⅰ)求的值;
(Ⅱ)若從成績較好的第3、4、5組中按分層抽樣的方法抽取6人參加市漢字聽寫比賽,并從中選出2人做種子選手,求2人中至少有1人是第4組的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高三年級有學(xué)生500人,其中男生300人,女生200人。為了研究學(xué)生的數(shù)學(xué)成績是否與性別有關(guān),采用分層抽樣的方法,從中抽取了100名學(xué)生,統(tǒng)計了他們期中考試的數(shù)學(xué)分數(shù),然后按照性別分為男、女兩組,再將兩組的分數(shù)分成5組: 分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖。
(I)從樣本分數(shù)小于110分的學(xué)生中隨機抽取2人,求兩人恰為一男一女的概率;
(II)若規(guī)定分數(shù)不小于130分的學(xué)生為“數(shù)學(xué)尖子生”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認為“數(shù)學(xué)尖子生與性別有關(guān)”?
附表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù) (e=2.71828,是自然對數(shù)的底數(shù))在的定義域上單調(diào)遞增,則稱函數(shù)具有M性質(zhì),下列函數(shù)中具有M性質(zhì)的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是拋物線的焦點, 為拋物線上不同的兩點, 分別是拋物線在點、點處的切線, 是的交點.
(1)當(dāng)直線經(jīng)過焦點時,求證:點在定直線上;
(2)若,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com