【題目】若函數(shù) (e=2.71828,是自然對(duì)數(shù)的底數(shù))在的定義域上單調(diào)遞增,則稱(chēng)函數(shù)具有M性質(zhì),下列函數(shù)中具有M性質(zhì)的是( )

A. B. C. D.

【答案】B

【解析】當(dāng)f(x)=x2時(shí),函數(shù)exf(x)在f(x)的定義域R上沒(méi)有單調(diào)性,故函數(shù)f(x)不具有M性質(zhì),故排除A;

當(dāng)f(x)=2x時(shí),函數(shù)exf(x)在f(x)=ex2x=(2e)x的定義域R上單調(diào)遞增,故函數(shù)f(x)具有M性質(zhì),故B滿(mǎn)足條件;

當(dāng)f(x)=3x時(shí),函數(shù)exf(x)在f(x)的定義域R上單調(diào)遞減,故函數(shù)f(x)不具有M性質(zhì),故排除C;

當(dāng)f(x)=cosx時(shí),函數(shù)exf(x)在f(x)的定義域R上沒(méi)有單調(diào)性,故函數(shù)f(x)不具有M性質(zhì),故排除D

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拖延癥總是表現(xiàn)在各種小事上,但日積月累,特別影響個(gè)人發(fā)展.某校的一個(gè)社會(huì)實(shí)踐調(diào)查小組,在對(duì)該校學(xué)生進(jìn)行“是否有明顯拖延癥”的調(diào)查中,隨機(jī)發(fā)放了110份問(wèn)卷.對(duì)收回的100份有效問(wèn)卷進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表:

有明顯拖延癥

無(wú)明顯拖延癥

合計(jì)

35

25

60

30

10

40

合計(jì)

65

35

100

(Ⅰ)按女生是否有明顯拖延癥進(jìn)行分層,已經(jīng)從40份女生問(wèn)卷中抽取了8份問(wèn)卷,現(xiàn)從這8份問(wèn)卷中再隨機(jī)抽取3份,并記其中無(wú)明顯拖延癥的問(wèn)卷的份數(shù)為,試求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(Ⅱ)若在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為無(wú)明顯拖延癥與性別有關(guān),那么根據(jù)臨界值表,最精確的的值應(yīng)為多少?請(qǐng)說(shuō)明理由.

附:獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量,其中

獨(dú)立性檢驗(yàn)臨界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓 過(guò)橢圓 ()的短軸端點(diǎn), , 分別是圓與橢圓上任意兩點(diǎn)且線段長(zhǎng)度的最大值為3.

(Ⅰ)求橢圓的方程;

(Ⅱ)過(guò)點(diǎn)作圓的一條切線交橢圓, 兩點(diǎn),求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.

(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;

(2)計(jì)算甲班的樣本方差;

(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某項(xiàng)科研活動(dòng)共進(jìn)行了5次試驗(yàn),其數(shù)據(jù)如下表所示:

特征量

第1次

第2次

第3次

第4次

第5次

555

559

551

563

552

601

605

597

599

598

(1)從5次特征量的試驗(yàn)數(shù)據(jù)中隨機(jī)地抽取兩個(gè)數(shù)據(jù),求至少有一個(gè)大于600的概率;

(2)求特征量關(guān)于的線性回歸方程;并預(yù)測(cè)當(dāng)特征量為570時(shí)特征量的值.

(附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求與直線3x-4y+7=0平行,且在兩坐標(biāo)軸上截距之和為1的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方體ABCDA1B1C1D1中,MN分別是A1B1、B1C1的中點(diǎn),問(wèn):

(1)AMCN是否是異面直線?說(shuō)明理由;

(2)D1BCC1是否是異面直線?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,底面ABCD中,ABAD,AD2AB3,BCBE7,DCE是邊長(zhǎng)為6的正三角形

(1)求證平面DEC⊥平面BDE

(2)求點(diǎn)A到平面BDE的距離

查看答案和解析>>

同步練習(xí)冊(cè)答案