分析 利用已知中,正四棱錐底面正方形的邊長為4cm,高與斜高的夾角為30°,求出正四棱錐的高PO,斜高PE,底面邊心距OE組成直角△POE,求出斜高和高,代入棱錐的側(cè)面積、表面積、體積公式,即可求得答案.
解答 解:(1)如圖,正四棱錐的高PO,斜高PE,底面邊心距OE組成直角△POE.
∵OE=2cm,∠OPE=30°,
∴斜高h(yuǎn)′=PE=$\frac{OE}{sin30°}$=4(cm),
∴S正棱錐側(cè)=$\frac{1}{2}$Ch′=$\frac{1}{2}$×4×4×4=32(cm2),
(2)S正棱錐全=42+32=48(cm2).
(3)V=$\frac{1}{3}×4×4×\sqrt{16-4}$=$\frac{32\sqrt{3}}{3}$.
點評 本題考查的知識點是棱錐的體積,主要通過正棱錐的高、斜高、底面邊心距組成的直角三角形尋找到各量的關(guān)系,并求解.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{7}{25}$ | B. | -$\frac{18}{25}$ | C. | -$\frac{12}{25}$ | D. | -$\frac{24}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題p:?x>0,都有x2>0,則?p:?x0≤0,使得x02≤0 | |
B. | 若命題p和p∨q都是真命題,則命題q也是真命題 | |
C. | 在△ABC中,a,b,c是角A,B,C的對邊,則a<b的充要條件是cosA>cosB | |
D. | 命題“若x2+x-2=0,則x=-2或x=1”的逆否命題是“x≠-2或x≠1,則x2+x-2≠0” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com