【題目】某學校的平面示意圖為如下圖五邊形區(qū)域ABCDE,其中三角形區(qū)域ABE為生活區(qū),四邊形區(qū)域BCDE為教學區(qū),AB,BC,CD,DE,EA,BE為學校的主要道路(不考慮寬度). , .
(1)求道路BE的長度;
(2)求生活區(qū)△ABE面積的最大值.
科目:高中數學 來源: 題型:
【題目】若實數x,y滿足的約束條件 ,將一顆骰子投擲兩次得到的點數分別為a,b,則函數z=2ax+by在點(2,﹣1)處取得最大值的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2lnx+ax﹣ (a∈R)在x=2處的切線經過點(﹣4,ln2)
(1)討論函數f(x)的單調性;
(2)若不等式 >mx﹣1恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市為了緩解城市交通壓力,大力發(fā)展公共交通,提倡多坐公交少開車,為了調查市民乘公交車的候車情況,交通主管部門從在某站臺等車的名候車乘客中隨機抽取人,按照他們的候車時間(單位:分鐘)作為樣本分成組,如下表所示:
組別 | 一 | 二 | 三 | 四 | 五 | 六 |
候車時間 | ||||||
人數 |
(1)估計這名乘客中候車時間少于分鐘的人數;
(2)若從上表第四、五組的人中隨機抽取人做進一步的問卷調查,求抽到的人恰好來自不同組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為響應“精確扶貧”號召,某企業(yè)計劃每年用不超過100萬元的資金購買單價分別為1500元/箱和3000元/箱的A、B兩種藥品捐獻給貧困地區(qū)某醫(yī)院,其中A藥品至少100箱,B藥品箱數不少于A藥品箱數.則該企業(yè)捐獻給醫(yī)院的兩種藥品總箱數最多可為( )
A.200
B.350
C.400
D.500
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l的參數方程為 (t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為2ρ2﹣ρ2cos2θ=12.若曲線C的左焦點F在直線l上,且直線l與曲線C交于A,B兩點.
(1)求m的值并寫出曲線C的直角坐標方程;
(2)求 的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在棱長為a的正方體ABCD﹣A1B1C1D1中,P為A1D1的中點,Q為A1B1上任意一點,E,F為CD上任意兩點,且EF的長為定值,則下面的四個值中不為定值的是( )
A.點Q到平面PEF的距離
B.直線PE與平面QEF所成的角
C.三棱錐P﹣QEF的體積
D.二面角P﹣EF﹣Q的大小
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】把半橢圓(x≥0)與圓弧(x﹣c)2+y2=a2(x<0)合成的曲線稱作“曲圓”,其中F(c,0)為半橢圓的右焦點.如圖,A1,A2,B1,B2分別是“曲圓”與x軸、y軸的交點,已知∠B1FB2=,扇形FB1A1B2的面積為.
(1)求a,c的值;
(2)過點F且傾斜角為θ的直線交“曲圓”于P,Q兩點,試將△A1PQ的周長L表示為θ的函數;
(3)在(2)的條件下,當△A1PQ的周長L取得最大值時,試探究△A1PQ的面積是否為定值?若是,請求出該定值;若不是,請求出面積的取值范圍.
-
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com