A. | ${log_{\frac{1}{2}}}({2^{a_3}}+{2^{a_7}})$有最小值-3 | B. | ${log_{\frac{1}{2}}}({2^{a_3}}+{2^{a_7}})$有最小值3 | ||
C. | ${log_{\frac{1}{2}}}({2^{a_3}}+{2^{a_7}})$有最大值-3 | D. | ${log_{\frac{1}{2}}}({2^{a_3}}+{2^{a_7}})$有最大值3 |
分析 利用等差數(shù)列的前n項(xiàng)和結(jié)合等差數(shù)列的性質(zhì)求得${2}^{{a}_{3}}+{2}^{{a}_{7}}≥8$,再由對(duì)數(shù)函數(shù)的單調(diào)性得答案.
解答 解:在等差數(shù)列{an}中由S9=18,
得$\frac{9({a}_{1}+{a}_{9})}{2}=\frac{9}{2}({a}_{3}+{a}_{7})=18$,
∴a3+a7=4.
∵${2}^{{a}_{3}}+{2}^{{a}_{7}}≥2\sqrt{{2}^{{a}_{3}}•{2}^{{a}_{7}}}=2\sqrt{{2}^{{a}_{3}+{a}_{7}}}$=$2\sqrt{{2}^{4}}=8$.
∴${log_{\frac{1}{2}}}({2^{a_3}}+{2^{a_7}})$$≤lo{g}_{\frac{1}{2}}8=-3$.
故選:C.
點(diǎn)評(píng) 本題考查等差數(shù)列的性質(zhì),訓(xùn)練了利用基本不等式求最值,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 曲線的切線 | B. | 曲線的切線的斜率 | ||
C. | 曲線y=f(x)的切線的斜率 | D. | 曲線y=f(x)在點(diǎn)(x0,f(x0))處切線的斜率 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | “a=-1”是“直線a2x-y+1=0與直線x-ay-2=0互相垂直”的充要條件 | |
B. | 直線xsinα+y+2=0的傾斜角的取值范圍是[0,$\frac{π}{4}}$]∪[$\frac{3π}{4},π}$) | |
C. | 過(guò)(x1,y1),(x2,y2)兩點(diǎn)的所有直線的方程$\frac{{y-{y_1}}}{{{y_2}-{y_1}}}=\frac{{x-{x_1}}}{{{x_2}-{x_1}}}$ | |
D. | 經(jīng)過(guò)點(diǎn)(1,1)且在x軸和y軸上截距都相等的直線方程為x+y-2=0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com