18.下列說法正確的是(  )
A.“a=-1”是“直線a2x-y+1=0與直線x-ay-2=0互相垂直”的充要條件
B.直線xsinα+y+2=0的傾斜角的取值范圍是[0,$\frac{π}{4}}$]∪[$\frac{3π}{4},π}$)
C.過(x1,y1),(x2,y2)兩點(diǎn)的所有直線的方程$\frac{{y-{y_1}}}{{{y_2}-{y_1}}}=\frac{{x-{x_1}}}{{{x_2}-{x_1}}}$
D.經(jīng)過點(diǎn)(1,1)且在x軸和y軸上截距都相等的直線方程為x+y-2=0

分析 A.根據(jù)直線垂直的等價(jià)條件進(jìn)行判斷,
B.根據(jù)直線斜率以及正切函數(shù)的圖象和性質(zhì)進(jìn)行判斷,
C.當(dāng)直線和坐標(biāo)軸平行時(shí),不滿足條件.
D.過原點(diǎn)的直線也滿足條件.

解答 解:A.當(dāng)a=0,兩直線方程分別為y=1和x=2,此時(shí)也滿足直線垂直,故A錯(cuò)誤,
B.直線的斜率k=-sinα,則-1≤k≤1,即-1≤tanθ≤1,則θ∈[0,$\frac{π}{4}}$]∪[$\frac{3π}{4},π}$),故B正確,
C.當(dāng)x1=x2,或y1=y2,時(shí)直線方程為x=x1,或y=y1,此時(shí)直線方程不成立,故C錯(cuò)誤,
D.若直線過原點(diǎn),則直線方程為y=x,此時(shí)也滿足條件,故D錯(cuò)誤,
故選:B.

點(diǎn)評(píng) 本題主要考查命題的真假判斷,涉及直線方程,直線斜率以及直線垂直的位置關(guān)系的判斷,難度不大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S9=18,則下列說法正確的是( 。
A.${log_{\frac{1}{2}}}({2^{a_3}}+{2^{a_7}})$有最小值-3B.${log_{\frac{1}{2}}}({2^{a_3}}+{2^{a_7}})$有最小值3
C.${log_{\frac{1}{2}}}({2^{a_3}}+{2^{a_7}})$有最大值-3D.${log_{\frac{1}{2}}}({2^{a_3}}+{2^{a_7}})$有最大值3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.極坐標(biāo)方程ρ=5表示的曲線是以原點(diǎn)(0,0)為圓心,5為半徑的圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.平面內(nèi)兩點(diǎn)A(0,-2),B(0,2),平面內(nèi)一點(diǎn)C滿足|CA|=2|CB|,則C的軌跡方程為3x2+3y2-20y+12=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a、b∈R+,a+b=1,M=$\frac{{a}^{3}}{a+^{2}}$+$\frac{^{3}}{{a}^{2}+b}$,N=$\frac{^{3}}{a+^{2}}$+$\frac{{a}^{3}}{{a}^{2}+b}$,則M與N的大小關(guān)系是( 。
A.M>NB.M<NC.M=ND.M≤N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.?dāng)?shù)列{xn}中,xn+1=$\frac{3{x}_{n}}{{x}_{n}+3}$(n∈N+).
(1)設(shè)an=$\frac{1}{{x}_{n}}$,求證:數(shù)列{an}為等差數(shù)列;
(2)若x1=$\frac{1}{2}$,求xn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,正三棱柱ABC-A1B1C1的底面邊長(zhǎng)是2,側(cè)棱長(zhǎng)是$\sqrt{3}$,D是AC的中點(diǎn).
(1)求證:B1C∥平面A1BD;
(2)求二面角D-BA1-C1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=cos2x的周期是π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,點(diǎn)P在⊙O外,PA,PB切⊙O于A,B,AD為⊙O的直徑,連結(jié)AB,OP,OB,BD,則圖中與∠PAB相等的角有(  )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案