4.在數(shù)列{an}中,a1=2,an+1=1-an(n∈N*),Sn為數(shù)列的前n項和,則S2015-2S2016+S2017的值為3.

分析 由a1=2,an+1=1-an(n∈N*),a2=-1,a3=2,a4=-1,數(shù)列的奇數(shù)項為2,偶數(shù)項為-1,S2015-2S2016+S2017=-a2016+a2017=2-(-1)=3.

解答 解:由題意可知:a1=2,an+1=1-an(n∈N*),
∴a2=-1,a3=2,a4=-1
∴數(shù)列的奇數(shù)項為2,偶數(shù)項為-1,
S2015-2S2016+S2017=-a2016+a2017=2-(-1)=3,
故答案選:3.

點評 本題考查利用數(shù)列的遞推公式求解數(shù)列的項,考查數(shù)列的周期性,考查計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A.y=-x2+1B.y=lg|x|C.$y=\frac{1}{x}$D.y=e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知:命題p:″a=1″是當(dāng)x>0時,x+$\frac{a}{x}$>2的充分必要條件,命題:q:?x0∈R,x02+x0-2>0,則下列命題正確的是(  )
A.命題p∧q是真命題B.命題¬p∧q是真命題
C.命題p∧(¬q)是真命題D.命題(¬p)∧(¬q)是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知$\frac{2a+b}{c}$=$\frac{cos(A+C)}{cosC}$
(1)求角C的大小;
(2)求$\frac{a+b}{c}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)是定義在R上的奇函數(shù),且f(x)在[0,+∞)上為增函數(shù),如果f(x2+ax+a)≤f(-at2-t+1)對任意x∈[1,2],任意t∈[1,2]恒成立,則實數(shù)a的最大值是( 。
A.-1B.$-\frac{1}{3}$C.$-\frac{{\sqrt{2}}}{4}$D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.動點P從邊長為1的正方形ABCD的頂點A出發(fā)順次經(jīng)過B,C,D再回到A,設(shè)x表示P點的行程,f(x)表示PA的長,g(x)表示△ABP的面積.
(1)求f(x)的表達式;
(2)求g(x)的表達式并作出g(x)的簡圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某幾何體由圓柱挖掉半個球和一個圓錐所得,三視圖中的正視圖和側(cè)視圖如圖所示,求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓$\frac{x^2}{4}$+$\frac{y^2}{2}$=1,F(xiàn)1,F(xiàn)2為其左.右焦點,直線l與橢圓相交于A、B兩點,
(1)線段AB的中點為(1,$\frac{1}{2}$),求直線l的方程;
(2)直線l過點F1,三角形ABF2內(nèi)切圓面積最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知$θ∈(0,\frac{π}{2})$,則曲線$\frac{x^2}{9}-\frac{y^2}{{4{{sin}^2}θ}}=1$與曲線$\frac{x^2}{{9-4{{cos}^2}θ}}-\frac{y^2}{4}=1$的( 。
A.離心率相等B.焦距相等C.虛軸長相等D.頂點相同

查看答案和解析>>

同步練習(xí)冊答案