已知頂點為原點的拋物線的焦點與橢圓的右焦點重合,在第一和第四象限的交點分別為.
(1)若是邊長為的正三角形,求拋物線的方程;
(2)若,求橢圓的離心率.
(1)拋物線的方程為;(2)橢圓的離心率.

試題分析:(1)先根據(jù)拋物線及橢圓的幾何性質得到點關于軸對稱,進而由求得點的坐標,接著代入拋物線的方程可求得的值,從而可確定拋物線的方程;(2)先根據(jù)確定的橫坐標為,進而代入橢圓的方程可確定點的坐標,再將該點的坐標代入拋物線,從中可得關系式,另一方面,從而得到,即,只須求解關于的方程即可得到內的解.
試題解析:(1)設橢圓的右焦點為,依題意得拋物線的方程為
是邊長為的正三角形,∴點的坐標是
代入拋物線的方程解得,故所求拋物線的方程為
(2)∵,∴點的橫坐標是代入橢圓方程解得,即點的坐標是
∵點在拋物線上,∴
代入上式整理得:
,解得
,故所求橢圓的離心率.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知,,分別是橢圓的四個頂點,△是一個邊長為2的等邊三角形,其外接圓為圓
(1)求橢圓及圓的方程;
(2)若點是圓劣弧上一動點(點異于端點),直線分別交線段,橢圓于點,,直線交于點
(。┣的最大值;
(ⅱ)試問:..,兩點的橫坐標之和是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

:的準線與軸交于點,焦點為;橢圓為焦點,離心率.設的一個交點.

(1)當時,求橢圓的方程.
(2)在(1)的條件下,直線的右焦點,與交于兩點,且等于的周長,求的方程.
(3)求所有正實數(shù),使得的邊長是連續(xù)正整數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓的中心為原點,長軸在軸上,離心率,又橢圓上的任一點到橢圓的兩焦點的距離之和為.

(1)求橢圓的標準方程;
(2)若平行于軸的直線與橢圓相交于不同的兩點、,過兩點作圓心為的圓,使橢圓上的其余點均在圓外.求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0),點A、B分別是橢圓C的左頂點和上頂點,直線AB與圓G:x2+y2(c是橢圓的半焦距)相離,P是直線AB上一動點,過點P作圓G的兩切線,切點分別為M、N.

(1)若橢圓C經過兩點,求橢圓C的方程;
(2)當c為定值時,求證:直線MN經過一定點E,并求·的值(O是坐標原點);
(3)若存在點P使得△PMN為正三角形,試求橢圓離心率的取值范圍..

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知中心在原點的雙曲線C的一個焦點是F1(-3,0),一條漸近線的方程是
(1)求雙曲線C的方程;
(2)若以k(k≠0)為斜率的直線l與雙曲線C相交于兩個不同的點M, N,且線段MA的垂直平分線與兩坐標軸圍成的三角形的面積為,求k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,已知橢圓的焦點在軸上,離心率為,且經過點
(1)求橢圓的標準方程;
(2) 以橢圓的長軸為直徑作圓,設為圓上不在坐標軸上的任意一點,軸上一點,過圓心作直線的垂線交橢圓右準線于點.問:直線能否與圓總相切,如果能,求出點的坐標;如果不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線=1的左支上一點M到右焦點F2的距離為18,N是線段MF2的中點,O是坐標原點,則|ON|等于(  )
A.4B.2 C.1 D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓,過點且離心率為.
求橢圓的方程;
已知是橢圓的左右頂點,動點滿足,連接角橢圓于點,在軸上是否存在異于點的定點,使得以為直徑的圓經過直線和直線的交點,若存在,求出點,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案