5.如圖,三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面A1B1C1,AA1=AC=BC=1,∠ACB=90°,D是A1B1的中點(diǎn),F(xiàn)是BB1上的點(diǎn),AB1,DF交于點(diǎn)E,且AB1⊥DF,則下列結(jié)論中不正確的是(  )
A.CE與BC1異面且垂直B.AB1⊥C1F
C.△C1DF是直角三角形D.DF的長(zhǎng)為$\frac{{\sqrt{6}}}{3}$

分析 利用空間線面位置關(guān)系的判定定理和性質(zhì)逐個(gè)進(jìn)行判斷.

解答 解:對(duì)于A,∵BC1?平面B1C1CB,CE?平面B1C1CB,且C∈平面B1C1CB,
∴CE與BC1是異面直線,
∵AA1∥CC1,AA1⊥平面ABC,
∴CC1⊥平面ABC,∴CC1⊥AC,
又AC⊥BC,BC∩CC1=C,
∴AC⊥平面B1C1CB,又BC1?平面B1C1CB,
∴AC⊥BC1,
又四邊形B1C1CB是正方形,∴BC1⊥B1C,
又B1C∩AC=C,
∴BC1⊥平面AB1C,∵CE?平面AB1C,
∴BC1⊥CE,故A正確;
對(duì)于B,∵C1A1=C1B1,D是A1B1的中點(diǎn),∴C1D⊥A1B1,
由AA1⊥底面A1B1C1可得AA1⊥C1D,
又A1B1∩AA1=A1,∴C1D⊥平面ABB1A1,
∴C1D⊥AB1,又DF⊥AB1,C1D∩DF=D,
∴AB1⊥平面C1DF,
∴AB1⊥C1F,故B正確;
對(duì)于C,由C1D⊥平面ABB1A1可得C1D⊥DF,
故△C1DF是直角三角形,故C正確;
對(duì)于D,∵AC=BC=AA1=1,∠ACB=90°,
∴A1B1=AB=$\sqrt{2}$,AB1=$\sqrt{3}$,∴DB1=$\frac{\sqrt{2}}{2}$,
∵AB1⊥DF,∴∠FDB1=∠AB1F=∠A1AB1,
∴cos∠FDB1=cos∠A1AB1,即$\frac{D{B}_{1}}{DF}=\frac{A{A}_{1}}{A{B}_{1}}$,
∴$\frac{\frac{\sqrt{2}}{2}}{DF}=\frac{1}{\sqrt{3}}$,解得DF=$\frac{\sqrt{6}}{2}$,故D錯(cuò)誤.
故選D.

點(diǎn)評(píng) 本題考查了空間線面位置關(guān)系的判斷,掌握判定定理和性質(zhì)是解題關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知單位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角為$\frac{π}{3}$,$\overrightarrow{a}$=3$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,則$\overrightarrow{a}$在$\overrightarrow{{e}_{1}}$上的投影是( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.△ABC是底邊邊長(zhǎng)為2$\sqrt{2}$的等腰直角三角形,P是以直角頂點(diǎn)C為圓心,半徑為1的圓上任意一點(diǎn),若m≤$\overrightarrow{AP}$•$\overrightarrow{PB}$≤n,則n-m的最小值為( 。
A.4$\sqrt{2}$B.2$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}滿足:a1=-2,a2=1,且an+1=-$\frac{1}{2}$(an+an+2),則{an}的前n項(xiàng)和Sn=$\left\{\begin{array}{l}{-k,n=2k}\\{k-3,n=2k-1}\end{array}\right.$(k∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知直線l經(jīng)過拋物線y2=4x的焦點(diǎn)F,且與拋物線交于A,B兩點(diǎn)(點(diǎn)A在第一象限)若$\overrightarrow{BA}=4\overrightarrow{BF}$,則△AOB的面積為(  )
A.$\frac{8}{3}\sqrt{3}$B.$\frac{4}{3}\sqrt{3}$C.$\frac{8}{3}\sqrt{2}$D.$\frac{4}{3}\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.《九章算術(shù)》是東方數(shù)學(xué)思想之源,在卷五《商功》中有以下問題:今有羨除,下廣六尺,上廣一丈,深三尺,末廣八尺,無深,袤七尺,問積幾何?譯文:如圖所示的幾何體是三個(gè)側(cè)面皆為等腰梯形,其他兩面為直角三角形的五面體,(前端)下寬6尺,上寬一丈,深3尺,末端寬8尺,無深,長(zhǎng)7尺,則它的體積是84立方尺.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知命題p:?x∈(-∞,0),2x>3x;命題q:?x∈(0,$\frac{π}{2}$),sinx>x,則下列命題為真命題的是( 。
A.p∧qB.(¬p)∨qC.(¬p)∧qD.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知Sn=na1+(n-1)a2+…+2an-1+an
(1)若{an}是等差數(shù)列,且S1=5,S2=18,求an
(2)若{an}是等比數(shù)列,且S1=3,S2=15,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xoy中,一動(dòng)圓經(jīng)過點(diǎn)($\frac{1}{2}$,0)且與直線x=-$\frac{1}{2}$相切,設(shè)該動(dòng)圓圓心的軌跡方程為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)設(shè)P是曲線E上的動(dòng)點(diǎn),點(diǎn)P的橫坐標(biāo)為x0,點(diǎn)B,C在y軸上,△PBC的內(nèi)切圓的方程為(x-1)2+y2=1,將|BC|表示成x0的函數(shù),并求△PBC面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案