由變量相對應(yīng)的一組數(shù)據(jù)、、、
得到的線性回歸方程為,則(    )
A.B.C.D.
D

試題分析:,由線性回歸方程可得:.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下
 


合計
需要
40
30
 
不需要
160
270
 
合計
 
 
 
(1)將表格填寫完整,并估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(2)能否在犯錯誤的概率不超過0.01的前提下認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)系?
(3)根據(jù)(2)的結(jié)論,能否提出更好的調(diào)查方法估計該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說明理由。
附表:
P(K2≥k)
0.050
0.010
0.001
k
3.841
6.635
10.828
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

關(guān)于某設(shè)備的使用年限和所支出的維修費(fèi)用(萬元),有如下的統(tǒng)計資料:
x
2
3
4
5
6
y
2.2
3.8
5.5
6.5
7.0
(1)如由資料可知呈線形相關(guān)關(guān)系.試求:線形回歸方程;(,
(2)估計使用年限為10年時,維修費(fèi)用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知y與x線性相關(guān),其回歸直線的斜率的估計值為1.23,樣本的中心點(diǎn)為(4,5),則其回歸直線方程為(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對于相關(guān)系數(shù)r下列描述正確的是(  )
A.r>0表明兩個變量線性相關(guān)性很強(qiáng)
B.r<0表明兩個變量無關(guān)
C.|r|越接近1,表明兩個變量線性相關(guān)性越強(qiáng)
D.r越小,表明兩個變量線性相關(guān)性越弱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某單位為了解用電量y度與氣溫x℃之間的關(guān)系,隨機(jī)統(tǒng)計了某4天的用電量與當(dāng)天氣溫.
氣溫(℃)
14
12
8
6
用電量(度)
22
26
34
38
由表中數(shù)據(jù)得線性回歸方程x+=-2,據(jù)此預(yù)測當(dāng)氣溫為5 ℃時,用電量的度數(shù)約為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在某種產(chǎn)品表面進(jìn)行腐蝕性刻線實(shí)驗(yàn),得到腐蝕深度y與腐蝕時間x之間相應(yīng)的一組觀察值,如下表:
x/s
5
10
15
20
30
40
50
60
70
90
120
y/μm
6
10
10
13
16
17
19
23
25
29
46
用散點(diǎn)圖及相關(guān)系數(shù)兩種方法判斷x與y的相關(guān)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

為了考察兩個變量之間的線性相關(guān)性,甲、乙兩位同學(xué)各自獨(dú)立地做100次和150次試驗(yàn),并且利用線性回歸方法,求得回歸直線分別為,已知兩人在試驗(yàn)中發(fā)現(xiàn)對變量的觀測數(shù)據(jù)的平均值都是,對變量的觀測數(shù)據(jù)的平均值都是,那么下列說法正確的是(     )
A.有交點(diǎn)B.相交,但交點(diǎn)不一定是
C.必定平行D.必定重合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知回歸直線的斜率的估計值為1.23,樣本點(diǎn)的中心為(4,5),則回歸直線方程為
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案