14.歐拉公式eix=cosx+isinx(i為虛數(shù)單位)是由瑞士著名數(shù)學(xué)家歐拉發(fā)明的,它將復(fù)數(shù)、指數(shù)函數(shù)與三角函數(shù)聯(lián)系起來,將指數(shù)函數(shù)的定義域擴(kuò)充為復(fù)數(shù),它在復(fù)變函數(shù)論里占有非常重要的地位,被譽(yù)為“數(shù)學(xué)中的天驕”,根據(jù)歐拉公式可知,復(fù)數(shù)e-2i所對應(yīng)的點(diǎn)在復(fù)平面中位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 e-2i表示的復(fù)數(shù)為:cos(-2)+isin(-2),根據(jù)-2∈(-$\frac{π}{2}$,-π),即可得出結(jié)論.

解答 解:e-2i表示的復(fù)數(shù)為:cos(-2)+isin(-2),
∵-2∈(-$\frac{π}{2}$,-π),∴cos(-2)<0,sin(-2)<0.
因此在復(fù)平面中位于第三象限.
故選:C.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義、三角函數(shù)求值,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆江西南昌市新課標(biāo)高三一輪復(fù)習(xí)訓(xùn)練五數(shù)學(xué)試卷(解析版) 題型:填空題

已知為第二象限角,且為其終邊上一點(diǎn),若,則的值為 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項運(yùn)動,得到如表的列聯(lián)表:
總計
愛好402060
不愛好203050
總計6050110
由K2=$\frac{n(ad-bc)^{2}}{(a+b)(b+c)(a+c)(b+d)}$,算得其觀測值k≈9.091.
附臨界值表:
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
K00.4550.7081.3232.0723.7063.8415.0246.6357.87910.828
參照附表,得到的正確結(jié)論是( 。
A.在犯錯誤的概率不超過0.5的前提下,認(rèn)為“愛好該項運(yùn)動與性別有關(guān)”
B.在犯錯誤的概率不超過0.5的前提下,認(rèn)為“愛好該項運(yùn)動與性別無關(guān)”
C.在犯錯誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項運(yùn)動與性別有關(guān)”
D.在犯錯誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項運(yùn)動與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=sin2x+sinxcosx+1的最小正周期是π,單調(diào)遞減區(qū)間是[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$](k∈Z)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,已知2a=$\sqrt{3}$csinA-acosC.
(1)求C;
(2)若c=$\sqrt{3}$,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.秦九韶是我國南宋時期的數(shù)學(xué)家,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實(shí)例,若輸入n,x的值分別為3,3,則輸出v的值為48.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}$ax2+x(a∈R),下列選項中不可能是函數(shù)f(x)圖象的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某幾何體的三視圖如圖所示,已知三視圖中的圓的半徑均為2,則該幾何體的體積為(  )
A.$\frac{20π}{3}$B.12πC.$\frac{44π}{3}$D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.F是拋物線y2=2x的焦點(diǎn),以F為端點(diǎn)的射線與拋物線相交于A,與拋物線的準(zhǔn)線相交于B,若$\overrightarrow{FB}=4\overrightarrow{FA}$,則$\overrightarrow{FA}•\overrightarrow{FB}$=(  )
A.1B.$\frac{3}{2}$C.2D.$\frac{9}{4}$

查看答案和解析>>

同步練習(xí)冊答案