【題目】如圖,四棱錐的底面是正方形, 底面 ,點(diǎn), 分別為棱, 的中點(diǎn)。

(1)求證: 平面

(2)求證:平面平面

【答案】(1)證明見解析;(2)證明見解析;

【解析】試題分析:

(1)由題意做出輔助線,結(jié)合幾何關(guān)系可證得.結(jié)合線面平行的判斷定理可證得平面.

(2)由題意可證得平面.結(jié)合面面垂直的判斷定理可證得平面平面.

試題解析:

(1)如圖,取的中點(diǎn),連接, ,所以的中位線,所以, .

因?yàn)樗倪呅?/span>為矩形, 的中點(diǎn),所以, ,所以, ,所以四邊形是平行四邊形,所以.

平面, 平面,所以平面.

(2)因?yàn)?/span>底面,所以, .又, ,所以平面,又平面,所以.

中, ,

所以為等腰直角三角形,所以,又的中點(diǎn),所以.

,故,

,所以平面.

平面,所以平面平面.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是函數(shù) 的導(dǎo)函數(shù) 的圖象,對此圖象,有如下結(jié)論:

①在區(qū)間(-2,1)內(nèi) 是增函數(shù);
②在區(qū)間(1,3)內(nèi) 是減函數(shù);
③在 時, 取得極大值;
④在 時, 取得極小值。
其中正確的是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)y=2sin(πx+φ),x∈R(其中0≤φ≤ )的圖象與y軸交于點(diǎn)(0,1).

(1)求φ的值.
(2)設(shè)P是圖象上的最高點(diǎn),M、N是圖象與x軸的交點(diǎn),求tan∠MPN的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是等差數(shù)列,滿足a1=3,a4=12,數(shù)列{bn}滿足b1=4,b4=20,且{bn﹣an}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿足,則稱為“類函數(shù)”.

(1)已知函數(shù),試判斷是否為“類函數(shù)”?并說明理由;

(2)設(shè)是定義在上的“類函數(shù)”,求是實(shí)數(shù)的最小值;

(3)若 為其定義域上的“類函數(shù)”,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),若,有,則稱函數(shù)為定義在上的非嚴(yán)格單增函數(shù);若,有,則稱函數(shù)為定義在上的非嚴(yán)格單減函數(shù). .

(1)若函數(shù)為定義在上的非嚴(yán)格單增函數(shù),求實(shí)數(shù)的取值范圍.

(2)若函數(shù)為定義在上的非嚴(yán)格單減函數(shù),試解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0),直線y=x+ 與以原點(diǎn)為圓心,以橢圓C的短半軸為半徑的圓相切,F(xiàn)1 , F2為其左右焦點(diǎn),P為橢圓C上的任意一點(diǎn),△F1PF2的重心為G,內(nèi)心為I,且IG∥F1F2
(1)求橢圓C的方程;
(2)已知A為橢圓C上的左頂點(diǎn),直線∫過右焦點(diǎn)F2與橢圓C交于M,N兩點(diǎn),若AM,AN的斜率k1 , k2滿足k1+
k2=﹣ ,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】所謂正三棱錐,指的是底面為正三角形,頂點(diǎn)在底面上的射影為底面三角形中心的三棱錐,在正三棱錐S﹣ABC中,M是SC的中點(diǎn),且AM⊥SB,底面邊長AB=2 ,則正三棱錐S﹣ABC的體積為 , 其外接球的表面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】連接球面上兩點(diǎn)的線段稱為球的弦,半徑為4的球的兩條弦AB、CD的長度分別為2 和4 ,M、N分別是AB、CD的中點(diǎn),兩條弦的兩端都在球面上運(yùn)動,有下面四個命題:
①弦AB、CD可能相交于點(diǎn)M;
②弦AB、CD可能相交于點(diǎn)N;
③MN的最大值是5;
④MN的最小值是1;
其中所有正確命題的序號為

查看答案和解析>>

同步練習(xí)冊答案