10.在△ABC中,a、b、c分別為A、B、C的對邊,若2b=a+c,B=30°,則△ABC的面積為$\frac{3}{2}$,則b的值1+$\sqrt{3}$.

分析 根據(jù)△ABC的面積,求出 ac=6,再由2b=a+c 利用余弦定理求得b的值.

解答 (本題滿分為10分)
解:在△ABC中,∵B=30°,S△ABC=$\frac{1}{2}$acsinB=$\frac{3}{2}$,
∴ac=6.…(4分)
∵2b=a+c,由余弦定理可得 b2=a2+c2-2accosB=(a+c)2-2ac-2accos30°,
∴b2=4b2-12-6$\sqrt{3}$,得b2=4+2$\sqrt{3}$,
∴b=1+$\sqrt{3}$.
故答案為:1+$\sqrt{3}$.…(10分)

點評 本題主要考查了三角形面積公式,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.等比數(shù)列{an}的前n項和為Sn,若S3是2a1與a2的等差中項,則該數(shù)列的公比q=(  )
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.計算定積分$\int_0^{\frac{π}{2}}{({3x+sinx})dx}$值是( 。
A.$\frac{{3{π^2}}}{8}-1$B.$\frac{{3{π^2}}}{8}+1$C.$\frac{{3{π^2}}}{4}-1$D.$\frac{{3{π^2}}}{4}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖所示,直線l與雙曲線$E:{x^2}-\frac{y^2}{4}=1$及其漸近線依次交于A、B、C、D四點,記$\frac{{|{AB}|}}{{|{BD}|}}=λ,\frac{{|{AC}|}}{{|{CD}|}}=μ$.
(Ⅰ)若直線l的方程為y=x+2,求λ及μ;
(Ⅱ)請根據(jù)(Ⅰ)的計算結(jié)果猜想λ與μ的關(guān)系,并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若集合A={x||2x-1|<3,$B=\{\left.x\right|\frac{2x+1}{3-x}<0\}$,則A∪B=(  )
A.$\{\left.x\right|-1<x<-\frac{1}{2}或2<x<3\}$B.{x|2<x<3}
C.{x|x<2或x>3}D.$\{\left.x\right|-\frac{1}{2}<x<2\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.$\int_2^3{({\sqrt{({2-x})({x-4})}-{2^x}})}dx$=$\frac{π}{4}-\frac{4}{ln2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下面程序運行后輸出的結(jié)果為( 。 
A.3B.5C.4D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.編寫一個程序框圖,求函數(shù)$f(x)=\left\{\begin{array}{l}2x,x≥3\\{x^2},x<3\end{array}\right.$的函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.小明和電腦進行一次答題比賽,共4局,每局10分,現(xiàn)將小明和電腦的4局比賽的得分統(tǒng)計如表:
小明5768
電腦69510
(1)求小明和電腦在本次比賽中的平均得分x1,x2及方差s12,s22
(2)從小明和電腦的4局比賽得分中隨機各選取1個分數(shù),并將其得分分別記為m,n,求|m-n|>2的概率.

查看答案和解析>>

同步練習(xí)冊答案