【題目】在直角坐標(biāo)系中,拋物線的方程為,以點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線 的極坐標(biāo)方程為,與軸交于點(diǎn).
(1)求直線的直角坐標(biāo)方程,點(diǎn)的極坐標(biāo);
(2)設(shè)與 交于兩點(diǎn),求.
【答案】(1),;(2)
【解析】
(1)將由兩角差的正弦公式展開(kāi),由可求直線的直角坐標(biāo)方程;再通過(guò)與軸交于點(diǎn),即可求得點(diǎn)的直角坐標(biāo),再轉(zhuǎn)化成極坐標(biāo)。
(2)設(shè)點(diǎn)所對(duì)應(yīng)的參數(shù)分別為 ,根據(jù)弦長(zhǎng)公式求解即可。
(1)由題可知直線 的極坐標(biāo)方程為 即
因?yàn)?/span>
所以直線的直角坐標(biāo)方程是.
由題與軸交于點(diǎn),所以點(diǎn)的直角坐標(biāo)是 ,轉(zhuǎn)化成極坐標(biāo)是 。
(2)設(shè)點(diǎn)所對(duì)應(yīng)的參數(shù)分別為
由(1)可知直線的傾斜角為,所以直線的參數(shù)方程為 ,
將直線的參數(shù)方程代入得
由韋達(dá)定理得
所以由弦長(zhǎng)公式得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)x≥0時(shí),f(x)≤h(x)恒成立,求a的取值范圍;
(Ⅱ)當(dāng)x<0時(shí),研究函數(shù)F(x)=h(x)﹣g(x)的零點(diǎn)個(gè)數(shù);
(Ⅲ)求證:(參考數(shù)據(jù):ln1.1≈0.0953).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的左焦點(diǎn)左頂點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)已知,是橢圓上的兩點(diǎn),是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn).若,試問(wèn)直線的斜率是否為定值?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從學(xué)生會(huì)宣傳部6名成員(其中男生4人,女生2人)中,任選3人參加某省舉辦的“我看中國(guó)改革開(kāi)放三十年”演講比賽活動(dòng).
(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列;
(2)求男生甲或女生乙被選中的概率;
(3)設(shè)“男生甲被選中”為事件A,“女生乙被選中”為事件B,求P(B)和P(B|A).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=-x2+2x+2.
(1)求f(x)的解析式;
(2)畫(huà)出f(x)的圖像,并指出f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的圓心為原點(diǎn),其半徑與橢圓的左焦點(diǎn)和上頂點(diǎn)的連線線段長(zhǎng)度相等.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓右焦點(diǎn)的動(dòng)直線(其斜率不為0)交圓于兩點(diǎn),試探究在軸正半軸上是否存在定點(diǎn),使得直線與的斜率之和為0?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,已知直線的極坐標(biāo)方程是,圓的參數(shù)方程為(為參數(shù),).
(1)若直線與圓有公共點(diǎn),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),過(guò)點(diǎn)且與直線平行的直線交圓于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】退休年齡延遲是平均預(yù)期壽命延長(zhǎng)和人口老齡化背景下的一種趨勢(shì).某機(jī)構(gòu)為了解某城市市民的年齡構(gòu)成,按的比例從年齡在20~80歲(含20歲和80歲)之間的市民中隨機(jī)抽取600人進(jìn)行調(diào)查,并將年齡按進(jìn)行分組,繪制成頻率分布直方圖,如圖所示.規(guī)定年齡在歲的人為“青年人”,歲的人為“中年人”, 歲的人為“老年人”.
(Ⅰ)根據(jù)頻率分布直方圖估計(jì)該城市60歲以上(含60歲)的人數(shù),若每一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值來(lái)代表,試估算所調(diào)查的600人的平均年齡;
(Ⅱ)將上述人口分布的頻率視為該城市年齡在20~80歲的人口分布的概率,從該城市年齡在20~80歲的市民中隨機(jī)抽取3人,記抽到“老年人”的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:
①已知,“且”是“”的充分條件;
②已知平面向量,“”是“”的必要不充分條件;
③已知,“”是“”的充分不必要條件;
④命題:“,使且”的否定為:“,都有且”.其中正確命題的個(gè)數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com