【題目】已知函數(shù)

1)當(dāng)時(shí),求不等式的解集;

2)當(dāng)時(shí),若對(duì)任意互不相等的實(shí)數(shù),都有成立,求實(shí)數(shù)的取值范圍;

3)判斷函數(shù)上的零點(diǎn)的個(gè)數(shù),并說(shuō)明理由.

【答案】(1);(2);(3)3個(gè)零點(diǎn).

【解析】試題分析:(1當(dāng)時(shí),不等式為,去掉絕對(duì)值化為,解得;(2)先求出函數(shù)的單調(diào)增區(qū)間為,由題意可得上單調(diào)增,故可得,解得解得;3當(dāng)時(shí),根據(jù)零點(diǎn)存在定理可得函數(shù)在區(qū)間和區(qū)間各有一個(gè)零點(diǎn);當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間有一個(gè)零點(diǎn),綜上可得函數(shù)共有3個(gè)零點(diǎn)。

試題解析:

(1)當(dāng)時(shí),不等式為,

,

解得,

∴原不等式的解集為.

(2)

的單調(diào)增區(qū)間為

上單調(diào)增,

,

解得

實(shí)數(shù)的取值范圍為 .

(3)由題意得

①當(dāng)時(shí),對(duì)稱(chēng)軸為,

因?yàn)?/span>,

,即

由零點(diǎn)存在性定理可知,函數(shù)在區(qū)間和區(qū)間各有一個(gè)零點(diǎn);

②當(dāng)時(shí),對(duì)稱(chēng)軸為,

函數(shù)在區(qū)間上單調(diào)遞增且,

所以函數(shù)在區(qū)間有一個(gè)零點(diǎn)。

綜上函數(shù)上有3個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直角梯形中,是邊長(zhǎng)為2的等邊三角形,沿折起,使處,且;然后再將沿折起,使處,且面,在面的同側(cè)

() 求證:平面;

() 求平面與平面所構(gòu)成的銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)試判斷函數(shù)的單調(diào)性;

2)設(shè),求上的最大值;

3)試證明:對(duì)任意,不等式都成立(其中是自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校對(duì)高二年級(jí)選學(xué)生物的學(xué)生的某次測(cè)試成績(jī)進(jìn)行了統(tǒng)計(jì),隨機(jī)抽取了名學(xué)生的成績(jī)作為樣,根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計(jì)表和頻率分布直方如下

(1)求表中的值和頻率分布直方圖中的值;

(2)如果用分層抽樣的方法,從樣本成績(jī)?cè)?/span>的學(xué)生中共抽取人,再?gòu)?/span>人中選人,

求這人成績(jī)?cè)?/span>的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)設(shè)a,b是兩個(gè)不相等的正數(shù),若,用綜合法證明:a+b>4

(2)已知a>b>c,且a+b+c=0,用分析法證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究。他們分別記錄了121日至125日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子的發(fā)芽數(shù),得到如下資料:

日期

121

122

123

124

125

溫差/

10

11

13

12

8

發(fā)芽數(shù)/

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線(xiàn)性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1)若選取的是121日與125日的兩組數(shù)據(jù),請(qǐng)根據(jù)122日至124日的數(shù)據(jù),求出y關(guān)于x的線(xiàn)性回歸方程bxa;

2)若由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為 得到的線(xiàn)性回歸方程是可靠的,試問(wèn)(1)中所得的線(xiàn)性回歸方程是否可靠?

(附:,,其中,為樣本平均值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下圖所示的幾何體中,底面為正方形,平面,,且,為線(xiàn)段的中點(diǎn).

(1)證明:平面

(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在點(diǎn)處的切線(xiàn)與直線(xiàn)平行,且,其中.

(Ⅰ)求的值,并求出函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè)函數(shù),對(duì)于正實(shí)數(shù),若,使得成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的正方體ABCDA1B1C1D1中,EF,E1,F1分別是棱AB,ADB1C1,C1D1的中點(diǎn),

求證:(1) ;

(2)∠EA1F=∠E1CF1.

查看答案和解析>>

同步練習(xí)冊(cè)答案