5.完成進(jìn)位制之間的轉(zhuǎn)化;把五進(jìn)制轉(zhuǎn)化為七進(jìn)制412(5)=212(7)

分析 選用累加權(quán)重法,將412(5)轉(zhuǎn)化為十進(jìn)制,再由除k求余法,將其化為七進(jìn)制.

解答 解:∵412(5)=2×20+1×51+4×52=107(10),
又∵107÷7=15…2,
15÷7=2…1,
2÷7=0…2,
故107(10)=212(7)
故答案為:212.

點(diǎn)評 本題考查算法的概念,以及進(jìn)位制的運(yùn)算.通過把5進(jìn)制轉(zhuǎn)化為10進(jìn)制,再把10進(jìn)制轉(zhuǎn)化為7進(jìn)制.其中10進(jìn)制是一個過渡,本題為基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,AB=6,AC=3$\sqrt{2}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-18.
(1)求BC的長;
(2)求tan2B的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知△ABC滿足∠BAC=60°,BC=2,對于△ABC外接圓上一點(diǎn)D,滿足∠BCD=45°,則BD=(  )
A.$\sqrt{6}$B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{2\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{12}$=1(a>2$\sqrt{3}$)的左焦點(diǎn)為F,左頂點(diǎn)為A,$\frac{1}{|OF|}$+$\frac{1}{|OA|}$=$\frac{3e}{|FA|}$,其中O為原點(diǎn),e為橢圓的離心率,過點(diǎn)A作斜率為k(k≠0)的直線l交橢圓C于點(diǎn)D,交y軸于點(diǎn)E.
(1)求橢圓C的方程;
(2)已知點(diǎn)Q(-3,0),P為線段AD上一點(diǎn)且|AP|=λ|AD|,是否存在定值λ使得OP⊥EQ恒成立,若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知點(diǎn)P(x,y)在橢圓x2+4y2=4上,則$\frac{3}{4}{x^2}+2x-{y^2}$的最大值為(  )
A.8B.7C.2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知過點(diǎn)A(-4,0)作動直線m與拋物線G:x2=2py(p>0)相交于B、C兩點(diǎn).
(1)當(dāng)直線的斜率是$\frac{1}{2}$時,$\overrightarrow{AC}$=4$\overrightarrow{AB}$,求拋物線G的方程;
(2)設(shè)B、C的中點(diǎn)是M,利用(1)中所求拋物線,試求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,AE⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE=2,F(xiàn)為CD中點(diǎn).
(Ⅰ)求證:EF⊥平面BCD;
(Ⅱ)求二面角C-DE-A的正弦值;
(Ⅲ)求點(diǎn)A到平面CDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=$\frac{cos\frac{π}{2}x}{x+\frac{1}{x}}$的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如果小明家的瓷都晚報(bào)規(guī)定在每天下午的4:30~6:30之間的任何一個時間隨機(jī)地被送到,他一家人在下午6:00~7:00之間的任何一個時間隨機(jī)地開始晚餐,瓷都晚報(bào)在晚餐前被送到小明家的概率是$\frac{15}{16}$.

查看答案和解析>>

同步練習(xí)冊答案