20.已知點(diǎn)P(x,y)在橢圓x2+4y2=4上,則$\frac{3}{4}{x^2}+2x-{y^2}$的最大值為( 。
A.8B.7C.2D.-1

分析 利用橢圓方程,轉(zhuǎn)化所求的表達(dá)式為二次函數(shù),通過(guò)二次函數(shù)的最值求解即可.

解答 解:點(diǎn)P(x,y)在橢圓x2+4y2=4上,可得x∈[-2,2].
可得y2=1-$\frac{1}{4}$x2
則$\frac{3}{4}{x^2}+2x-{y^2}$=x2+2x-1=(x+1)2-2≤9-2=7,當(dāng)且僅當(dāng)x=2時(shí)表達(dá)式取得最大值7.
故選:B.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),二次函數(shù)閉區(qū)間上的最值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如圖是一個(gè)求函數(shù)值的算法流程圖,若輸入的x的值為5,則輸出的y的值為-15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若等差數(shù)列{an}的前n項(xiàng)和為Sn,且S5=20,則a3等于(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知命題p:$\frac{1}{a}$>$\frac{1}{4}$,命題q:?x∈R,ax2+1>0,則p成立是q成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)F1,F(xiàn)2是橢圓C1:$\frac{x^2}{{{a_1}^2}}+\frac{y^2}{{{b_1}^2}}$=1(a1>b1>0)與雙曲線C2:$\frac{x^2}{{{a_2}^2}}-\frac{y^2}{{{b_2}^2}}$=1(a2>0,b2>0)的公共焦點(diǎn),曲線C1,C2在第一象限內(nèi)交于點(diǎn)M,∠F1MF2=90°,若橢圓C1的離心率e1∈[$\frac{{\sqrt{6}}}{3}$,1),則雙曲線C2的離心率e2的范圍是( 。
A.$({1,\sqrt{3}}]$B.$({1,\sqrt{2}}]$C.$[{\sqrt{3},+∞})$D.$[{\sqrt{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.完成進(jìn)位制之間的轉(zhuǎn)化;把五進(jìn)制轉(zhuǎn)化為七進(jìn)制412(5)=212(7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.“x=1”是“x2+x-2=0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=2x-a-1,若f(-1)=$\frac{3}{4}$,則a等于( 。
A.1B.-1C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知cos(θ+$\frac{5π}{12}$)=-$\frac{\sqrt{2}}{2}$,且θ為銳角,則cos($\frac{π}{4}$-θ)的值為(  )
A.-$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{6}-\sqrt{2}}{4}$D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案