9.若復(fù)數(shù)z=(x2+2x-3)+(x+3)i為純虛數(shù),則實(shí)數(shù)x的值為(  )
A.-3B.1C.-3或1D.-1或3

分析 根據(jù)復(fù)數(shù)z=(x2+2x-3)+(x+3)i為純虛數(shù),可得x2+2x-3=0,x+3≠0,解得x.

解答 解:∵復(fù)數(shù)z=(x2+2x-3)+(x+3)i為純虛數(shù),
∴x2+2x-3=0,x+3≠0,解得x=1.
故選:B.

點(diǎn)評(píng) 本題考查了純虛數(shù)的定義、方程的解法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,點(diǎn)E在棱PC上(異于點(diǎn)P,C),平面ABE與棱PD交于點(diǎn)F.
(1)求證:AB∥EF;
(2)若平面PAD⊥平面ABCD,求證:AF⊥EF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在四面體ABCD中,若AB=CD=$\sqrt{3}$,AC=BD=2,AD=BC=$\sqrt{5}$,則直線AB與CD所成角的余弦值為( 。
A.-$\frac{1}{3}$B.-$\frac{1}{4}$C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在(1-2x)7(1+x)的展開(kāi)式中,含x2項(xiàng)的系數(shù)為( 。
A.71B.70C.21D.49

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.不等式組$\left\{\begin{array}{l}{2x-y+6≥0}\\{x+y≥0}\\{x≤2}\end{array}\right.$,表示的平面區(qū)域的面積為( 。
A.48B.24C.16D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.為調(diào)査某高校學(xué)生對(duì)“一帶一路”政策的了解情況,現(xiàn)采用分層抽樣的方法抽取一個(gè)容量為500的樣本,其中大一年級(jí)抽取200人,大二年級(jí)抽取100人.若其他年級(jí)共有學(xué)生3000人,則該校學(xué)生總?cè)藬?shù)是7500.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知矩陣$M=[{\begin{array}{l}1&a\\ 3&b\end{array}}]$的一個(gè)特征值λ1=-1,及對(duì)應(yīng)的特征向量$\overrightarrow e=[{\begin{array}{l}1\\{-1}\end{array}}]$,求矩陣M的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)正方形ABCD邊長(zhǎng)為2,H是邊DA的中點(diǎn),若在正方形ABCD內(nèi)部隨機(jī)取一點(diǎn)P,則滿足|PH|<$\sqrt{2}$的概率為$\frac{2+π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某經(jīng)銷(xiāo)商從外地一水殖廠購(gòu)進(jìn)一批小龍蝦,并隨機(jī)抽取40只進(jìn)行統(tǒng)計(jì),按重量分類(lèi)統(tǒng)計(jì)結(jié)果如下圖:

(1)記事件A為:“從這批小龍蝦中任取一只,重量不超過(guò)35g的小龍蝦”,求P(A)的估計(jì)值;
(2)試估計(jì)這批小龍蝦的平均重量;
(3)為適應(yīng)市場(chǎng)需求,制定促銷(xiāo)策略.該經(jīng)銷(xiāo)商又將這批小龍蝦分成三個(gè)等級(jí),并制定出銷(xiāo)售單價(jià),如下表:
等級(jí)一等品二等品三等品
重量(g)[5,25)[25,35)[35,55]
單價(jià)(元/只)1.21.51.8
試估算該經(jīng)銷(xiāo)商以每千克至多花多少元(取整數(shù))收購(gòu)這批小龍蝦,才能獲得利潤(rùn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案