A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
分析 分別從函數(shù)的定義域和對(duì)應(yīng)法則分析各命題是否正確.
解答 解:對(duì)于①,由于函數(shù)y=$\sqrt{{x}^{2}}$的定義域?yàn)镽,y=($\sqrt{x}$)2的定義域?yàn)閇0,+∞),這兩個(gè)函數(shù)的定義域不同,故不是同一函數(shù),故①不滿足條件.
對(duì)于②,由于函數(shù)f(x-1)的定義域?yàn)閇1,2],故有0≤x-1≤1.
對(duì)于函數(shù)f(3x2),可得0≤3x2≤1,解得x∈[$-\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$];
故函數(shù)f(3x2)的定義域?yàn)椤省蔥-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$],故②不正確.
對(duì)于③,函數(shù)y=log2(x2+2x-3),令t=x2+2x-3>0,求得x<-3,或x>1,
故函數(shù)的定義域?yàn)椋?∞,-3)∪(1,+∞),本題即求t在定義域內(nèi)的增區(qū)間,
利用二次函數(shù)的性質(zhì)可得t的遞增區(qū)間為(1,+∞),故③不正確.
答案:A
點(diǎn)評(píng) 本題考查了函數(shù)的三要素;要判斷兩個(gè)函數(shù)是否為同一個(gè)函數(shù),首先定義域和對(duì)應(yīng)法則要相同.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{400\sqrt{2}}{3}$ | B. | $\frac{400\sqrt{3}}{3}$ | C. | $\frac{200(3+\sqrt{3})}{3}$ | D. | $\frac{200(3-\sqrt{3})}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {a|a>1} | B. | {a|a≥1} | C. | {a|a≤1} | D. | {a|0≤a≤1} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com