15.若x>0,y>0,且x+2y=1,則$\frac{1}{x}$+$\frac{1}{y}$的取值范圍是[3+$2\sqrt{2}$,+∞).

分析 利用“乘1法”與基本不等式的性質(zhì)即可得出

解答 解:∵x>0,y>0,x+2y=1,
那么:$\frac{1}{x}+\frac{1}{y}$=($\frac{1}{x}+\frac{1}{y}$)(x+2y)=1+$\frac{x}{y}+2+\frac{2y}{x}$≥3+2$\sqrt{\frac{x}{y}•\frac{2y}{x}}$=3+$2\sqrt{2}$.
當且僅當x=$\sqrt{2}$y,即x=$\frac{\sqrt{2}}{2+\sqrt{2}}$,y=$\frac{1}{2+\sqrt{2}}$時取等號.
所以:$\frac{1}{x}+\frac{1}{y}$的取值范圍是[3+$2\sqrt{2}$,+∞)
故答案為:[3+$2\sqrt{2}$,+∞).

點評 本題考查了“乘1法”與基本不等式的性質(zhì),屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.若sinα=$-\frac{3}{5}$,α是第四象限的角,則$cos(\frac{π}{4}+α)$=( 。
A.$-\frac{{7\sqrt{2}}}{10}$B.$\frac{{7\sqrt{2}}}{10}$C.$-\frac{{\sqrt{2}}}{10}$D.$\frac{{\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.面積為14的三角形有兩邊之差為2,夾角的余弦值為$\frac{3}{5}$,則這兩邊的邊長分別為( 。
A.3和5B.4和6C.5和7D.6和8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知兩角和的余弦公式C(α+β):cos(α-β)=cosαcosβ-sinαsinβ;
1.由C(α+β)推導兩角和的正弦公式S(α+β):sin(α+β)=sinαcosβ+cosαsinβ
2.已知cosα=-$\frac{4}{5}$,α∈(π,$\frac{3}{2}$π),tan β=-$\frac{1}{3}$,β∈($\frac{π}{2}$,π),求sin(α+β).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.直線$\left\{\begin{array}{l}{x=sinθ+tsin15°}\\{y=cosθ-tsin75°}\end{array}\right.$(t為參數(shù),θ是常數(shù))的傾斜角是( 。
A.15°B.75°C.105°D.165°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.(m+x)(1+x)4的展開式中的x的偶數(shù)次冪項的系數(shù)之和為24,則m=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列結(jié)論:
(1)函數(shù)y=$\sqrt{{x}^{2}}$和y=($\sqrt{x}$)2是同一函數(shù);
(2)函數(shù)f(x-1)的定義域為[1,2],則函數(shù)f(3x2)的定義域為[0,$\frac{\sqrt{3}}{3}$];
(3)函數(shù)y=log2(x2+2x-2)的遞增區(qū)間為(-1,+∞);
其中正確的個數(shù)為( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知向量$\overrightarrow{a}$=(sin$\frac{x}{2}$,-1),當$\overrightarrow$=($\sqrt{3}$cos$\frac{x}{2}$+sin$\frac{x}{2}$,y)當$\overrightarrow{a}$⊥$\overrightarrow$時,有函數(shù)y=f(x)
(Ⅰ)若f(x)=$\frac{5}{6}$,求sin(2x+$\frac{π}{6}$)的值;
(Ⅱ)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足cosC=$\frac{2b-c}{2a}$,求函數(shù)f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知p:x2-1>0,則下列條件可以是p成立的充分不必要條件的是(  )
A.x<-0.1B.x≥1C.x<-1或x>1D.x<-2

查看答案和解析>>

同步練習冊答案