18.已知集合M⊆{2,3,5},且M中至少有一個奇數(shù),則這樣的集合共有4個.

分析 根據(jù)題意,列舉符合條件的集合M,即可得答案.

解答 解:根據(jù)題意,集合M⊆{2,3,5},且M中至少有一個奇數(shù),
即M中必須有元素3,
則M={3}、{2,3}、{3,5}、{2,3,5}
即這樣的集合共有4個;
故答案為:4.

點評 本題考查集合的子集,關(guān)鍵是掌握集合子集的定義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知θ是第一象限角,若$sinθ-2cosθ=-\frac{2}{5}$,則sinθ+cosθ=$\frac{7}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.點P的直角坐標(biāo)為(-$\sqrt{2}$,$\sqrt{2}$),那么它的極坐標(biāo)可表示為( 。
A.(2,$\frac{π}{4}$)B.(2,$\frac{3π}{4}$)C.(2,$\frac{5π}{4}$)D.(2,$\frac{7π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xoy中,曲線C1是以C1(3,1)為圓心,$\sqrt{5}$為半徑的圓.以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線C2:ρsinθ-ρcosθ=1.
(1)求曲線C1的參數(shù)方程與直線C2的直角坐標(biāo)方程;
(2)直線C2與曲線C1相交于A,B兩點,求△ABC1的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.執(zhí)行如圖所示的程序框圖,則輸出的a值為81.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=|x-4|-t,t∈R,且關(guān)于x的不等式f(x+2)<2的解集為(-1,5).
(Ⅰ)求t的值;
(Ⅱ)設(shè)a,b,c均為正實數(shù),且a+b+c=t,求證:$\frac{{a}^{2}}+\frac{^{2}}{c}+\frac{{c}^{2}}{a}$≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=|x-2|-|2x+l|.
(I)求不等式f(x)≤x的解集;
(II )若不等式f(x)≥t2-t在x∈[-2,-1]時恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)求不等式($\frac{1}{4}$)x>($\frac{1}{2}$)x-1的解集
(2)求函數(shù)$y={({\frac{1}{2}})^{{x^2}+2x+2}}$的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知x>0時有不等式x+$\frac{1}{x}$≥2,x+$\frac{4}{{x}^{2}}$=$\frac{x}{2}$+$\frac{x}{2}$+$\frac{4}{{x}^{2}}$≥3,…成立,由此啟發(fā)我們可以推廣為x+$\frac{a}{{x}^{n}}$≥n+1(n∈N*),則a的值為nn

查看答案和解析>>

同步練習(xí)冊答案