【題目】某學(xué)校為了了解高一年級學(xué)生學(xué)習(xí)數(shù)學(xué)的狀態(tài),從期中考試成績中隨機抽取50名學(xué)生的數(shù)學(xué)成績,按成績分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)由頻率分布直方圖,估計這50名學(xué)生數(shù)學(xué)成績的中位數(shù)和平均數(shù)(保留到0.01);
(2)該校高一年級共有1000名學(xué)生,若本次考試成績90分以上(含90分)為“優(yōu)秀”等次,則根據(jù)頻率分布直方圖估計該校高一學(xué)生數(shù)學(xué)成績達到“優(yōu)秀”等次的人數(shù).
【答案】(1)中位數(shù)為,平均數(shù)為 (2)
【解析】
(1)設(shè)這50名學(xué)生數(shù)學(xué)成績的中位數(shù)和平均數(shù)分別為,因為前2組的頻率之和為,因為前3組的頻率之和為,所以,求出即可求得答案;
(2)因為樣本中90分及以上的頻率為,所以該校高一年級1000名學(xué)生中,根據(jù)頻率分布直方圖,即可估計該校高一學(xué)生數(shù)學(xué)成績達到人數(shù).
“優(yōu)秀”等次的人數(shù)
(1)設(shè)這50名學(xué)生數(shù)學(xué)成績的中位數(shù)和平均數(shù)分別為
因為前2組的頻率之和為,因為前3組的頻率之和為,所以,
由,得.
所以,這50名學(xué)生數(shù)學(xué)成績的中位數(shù)和平均數(shù)分別為,
(2)因為樣本中90分及以上的頻率為,
所以該校高一年級1000名學(xué)生中,根據(jù)頻率分布直方圖估計該校高一學(xué)生數(shù)學(xué)成績達到
“優(yōu)秀”等次的人數(shù)為人.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,平面ABC⊥平面BCD,△BAC與BCD均為等腰直角三角形,且∠BAC=∠BCD=90°,BC=2,點P是線段AB上的動點,若線段CD上存在點Q,使得異面直線PQ與AC成30°的角,則線段PA長的取值范圍是( )
A.(0,)B.[0,]C.(,)D.(,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,隨著網(wǎng)絡(luò)的普及,數(shù)碼產(chǎn)品早已走進千家萬戶的生活,為了節(jié)約資源,促進資源循環(huán)利用,折舊產(chǎn)品回收行業(yè)得到迅猛發(fā)展,電腦使用時間越長,回收價值越低,某二手電腦交易市場對2018年回收的折舊電腦交易前使用的時間進行了統(tǒng)計,得到如圖所示的頻率分布直方圖,在如圖對時間使用的分組中,將使用時間落入各組的頻率視為概率.
(1)若在該市場隨機選取3個2018年成交的二手電腦,求至少有2個使用時間在上的概率;
(2)根據(jù)電腦交易市場往年的數(shù)據(jù),得到如圖所示的散點圖,其中(單位:年)表示折舊電腦的使用時間,(單位:百元)表示相應(yīng)的折舊電腦的平均交易價格.
(。┯缮Ⅻc圖判斷,可采用作為該交易市場折舊電腦平均交易價格與使用年限的回歸方程,若,,選用如下參考數(shù)據(jù),求關(guān)于的回歸方程.
5.5 | 8.5 | 1.9 | 301.4 | 79.75 | 385 |
(ⅱ)根據(jù)回歸方程和相關(guān)數(shù)據(jù),并用各時間組的區(qū)間中點值代表該組的值,估算該交易市場收購1000臺折舊電腦所需的費用
附:參考公式:對于一組數(shù)據(jù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),下述四個結(jié)論:
①是偶函數(shù);
②的最小正周期為;
③的最小值為0;
④在上有3個零點
其中所有正確結(jié)論的編號是( )
A.①②B.①②③C.①③④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓,動圓與圓外切并與圓內(nèi)切,圓心的軌跡為曲線.
(1)求的方程;
(2)若直線與曲線交于兩點,問是否在軸上存在一點,使得當(dāng)變動時總有?若存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)為曲線上的動點,點在線段上,且滿足,求點的軌跡的直角坐標(biāo)方程;
(2)設(shè)點的極坐標(biāo)為,點在曲線上,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln (x+1)- -x,a∈R.
(1)當(dāng)a>0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com