【題目】近年來(lái),隨著網(wǎng)絡(luò)的普及,數(shù)碼產(chǎn)品早已走進(jìn)千家萬(wàn)戶(hù)的生活,為了節(jié)約資源,促進(jìn)資源循環(huán)利用,折舊產(chǎn)品回收行業(yè)得到迅猛發(fā)展,電腦使用時(shí)間越長(zhǎng),回收價(jià)值越低,某二手電腦交易市場(chǎng)對(duì)2018年回收的折舊電腦交易前使用的時(shí)間進(jìn)行了統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,在如圖對(duì)時(shí)間使用的分組中,將使用時(shí)間落入各組的頻率視為概率.

(1)若在該市場(chǎng)隨機(jī)選取3個(gè)2018年成交的二手電腦,求至少有2個(gè)使用時(shí)間在上的概率;

(2)根據(jù)電腦交易市場(chǎng)往年的數(shù)據(jù),得到如圖所示的散點(diǎn)圖,其中(單位:年)表示折舊電腦的使用時(shí)間,(單位:百元)表示相應(yīng)的折舊電腦的平均交易價(jià)格.

(。┯缮Ⅻc(diǎn)圖判斷,可采用作為該交易市場(chǎng)折舊電腦平均交易價(jià)格與使用年限的回歸方程,若,選用如下參考數(shù)據(jù),求關(guān)于的回歸方程.

5.5

8.5

1.9

301.4

79.75

385

(ⅱ)根據(jù)回歸方程和相關(guān)數(shù)據(jù),并用各時(shí)間組的區(qū)間中點(diǎn)值代表該組的值,估算該交易市場(chǎng)收購(gòu)1000臺(tái)折舊電腦所需的費(fèi)用

附:參考公式:對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為:.參考數(shù)據(jù):,,,.

【答案】(1) (2) (ⅰ) (ⅱ)

【解析】

1)由頻率分布直方圖可知一臺(tái)電腦使用時(shí)間在上的概率為:,滿(mǎn)足題意的有;(2)(ⅰ)根據(jù)公式計(jì)算得到其中的,進(jìn)而得到表達(dá)式;(ⅱ)根據(jù)頻率分布直方圖對(duì)成交的二手折舊電腦使用時(shí)間在,,,上的頻率依次為:0.2,0.360.28,0,120.04,由上一問(wèn)的表達(dá)式得到各個(gè)區(qū)間上的相應(yīng)的估計(jì)值,進(jìn)而得到平均值.

(1)由頻率分布直方圖可知一臺(tái)電腦使用時(shí)間在上的概率為:

,

設(shè)“任選3臺(tái)電腦,至少有兩臺(tái)使用時(shí)間在”為事件,則

(2)(。┯,即,

,即,所以.

(ⅱ)根據(jù)頻率分布直方圖對(duì)成交的二手折舊電腦使用時(shí)間在,,,

上的頻率依次為:0.2,0.36,0.28,0,12,0.04:

根據(jù)(1)中的回歸方程,

在區(qū)間上折舊電腦價(jià)格的預(yù)測(cè)值為,

在區(qū)間上折舊電腦價(jià)格的預(yù)測(cè)值為

在區(qū)間上折舊電腦價(jià)格的預(yù)測(cè)值為,

在區(qū)間上折舊電腦價(jià)格的預(yù)測(cè)值為,

在區(qū)間上折舊電腦價(jià)格的預(yù)測(cè)值為,

于是,可以預(yù)測(cè)該交易市場(chǎng)一臺(tái)折舊電腦交易的平均價(jià)格為:

(百元)

故該交易市場(chǎng)收購(gòu)1000臺(tái)折舊電腦所需的的費(fèi)用為:

(元)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某濕地公園的鳥(niǎo)瞰圖是一個(gè)直角梯形,其中:,,,長(zhǎng)1千米,長(zhǎng)千米,公園內(nèi)有一個(gè)形狀是扇形的天然湖泊,扇形長(zhǎng)為半徑,弧為湖岸,其余部分為灘地,B,D點(diǎn)是公園的進(jìn)出口.公園管理方計(jì)劃在進(jìn)出口之間建造一條觀光步行道:線(xiàn)段線(xiàn)段,其中Q在線(xiàn)段上(異于線(xiàn)段端點(diǎn)),與弧相切于P點(diǎn)(異于弧端點(diǎn)]根據(jù)市場(chǎng)行情,段的建造費(fèi)用是每千米10萬(wàn)元,湖岸段弧的建造費(fèi)用是每千米萬(wàn)元(步行道的寬度不計(jì)),設(shè)弧度觀光步行道的建造費(fèi)用為萬(wàn)元.

1)求步行道的建造費(fèi)用關(guān)于的函數(shù)關(guān)系式,并求其走義域;

2)當(dāng)為何值時(shí),步行道的建造費(fèi)用最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】空氣質(zhì)量AQI指數(shù)是反映空氣質(zhì)量狀況指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對(duì)應(yīng)關(guān)系如表:

AQI指數(shù)值

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

如圖所示的是某市111日至20AQI指數(shù)變化的折線(xiàn)圖:

下列說(shuō)法不正確的是(

A.天中空氣質(zhì)量為輕度污染的天數(shù)占

B.天中空氣質(zhì)量為優(yōu)和良的天數(shù)為

C.天中AQI指數(shù)值的中位數(shù)略低于

D.總體來(lái)說(shuō),該市11月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)f(x)=sin 3x-cos 3x+1的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象,給出下列關(guān)于g(x)的結(jié)論:

①它的圖象關(guān)于直線(xiàn)x=對(duì)稱(chēng);

②它的最小正周期為

③它的圖象關(guān)于點(diǎn)(,1)對(duì)稱(chēng);

④它在[]上單調(diào)遞增.

其中所有正確結(jié)論的編號(hào)是(

A.①②B.②③C.①②④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,已知,,,,平面平面,的中點(diǎn),連接.

(1)求證:平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了了解高一年級(jí)學(xué)生學(xué)習(xí)數(shù)學(xué)的狀態(tài),從期中考試成績(jī)中隨機(jī)抽取50名學(xué)生的數(shù)學(xué)成績(jī),按成績(jī)分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

(1)由頻率分布直方圖,估計(jì)這50名學(xué)生數(shù)學(xué)成績(jī)的中位數(shù)和平均數(shù)(保留到0.01);

(2)該校高一年級(jí)共有1000名學(xué)生,若本次考試成績(jī)90分以上(含90分)為優(yōu)秀等次,則根據(jù)頻率分布直方圖估計(jì)該校高一學(xué)生數(shù)學(xué)成績(jī)達(dá)到優(yōu)秀等次的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱中,底面是矩形,交于點(diǎn),.

(1)證明:平面;

(2)求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,為等邊三角形,平面平面.

(1)證明:平面平面

(2)若,為線(xiàn)段的中點(diǎn),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.

(1)求曲線(xiàn)的普通方程及直線(xiàn)的直角坐標(biāo)方程;

(2)已知點(diǎn)為曲線(xiàn)上的動(dòng)點(diǎn),當(dāng)點(diǎn)到直線(xiàn)的距離最大時(shí),求點(diǎn)的直角坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案