【題目】設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x﹣1,則不等式f(x)<0的解集為( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣∞,﹣1)∪(1,+∞)
C.(﹣1,1)
D.(﹣1,0)∪(1,+∞)
【答案】A
【解析】解:設(shè)x<0,則﹣x>0,∵當(dāng)x>0時(shí),f(x)=x﹣1,
∴f(﹣x)=﹣x﹣1,
∴f(x)=﹣f(x)=x+1,x<0.
圖象如圖所示,則不等式f(x)<0的解集為(﹣∞,﹣1)∪(0,1),
故選A.
【考點(diǎn)精析】掌握函數(shù)奇偶性的性質(zhì)是解答本題的根本,需要知道在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x+ +3,x∈N* , 在x=5時(shí)取到最小值,則實(shí)數(shù)a的所有取值的集合為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若Sm-1=-2,Sm=0,Sm+1=3,則m=( )
A. 5 B. 4 C. 3 D. 6
【答案】A
【解析】
根據(jù)數(shù)列前n項(xiàng)和的定義得到的值,再由數(shù)列的前n項(xiàng)和的公式得到,進(jìn)而求得首項(xiàng),由=2,解得m值.
Sm-1=-2,Sm=0,故得到 Sm=0,Sm+1=3,則,
根據(jù)等差數(shù)列的前n項(xiàng)和公式得到Sm=,得到首項(xiàng)為-2,故=2,解得m=5.
故答案為:A.
【點(diǎn)睛】
這個(gè)題目考查的是數(shù)列通項(xiàng)公式的求法及數(shù)列求和的常用方法;數(shù)列通項(xiàng)的求法中有常見(jiàn)的已知和的關(guān)系,求表達(dá)式,一般是寫(xiě)出做差得通項(xiàng),但是這種方法需要檢驗(yàn)n=1時(shí)通項(xiàng)公式是否適用;數(shù)列求和常用法有:錯(cuò)位相減,裂項(xiàng)求和,分組求和等。
【題型】單選題
【結(jié)束】
11
【題目】已知等比數(shù)列{an}的各項(xiàng)均為不等于1的正數(shù),數(shù)列{bn}滿(mǎn)足bn=lgan,b3=18,b6=12,則數(shù)列{bn}的前n項(xiàng)和的最大值等于( )
A. 126 B. 130 C. 132 D. 134
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是公比為正數(shù)的等比數(shù)列,,
(1)求的通項(xiàng)公式;
(2)設(shè)是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列的前項(xiàng)和
【答案】(1)(2)
【解析】
(1)根據(jù)等比數(shù)列的通項(xiàng)公式得到:,解得二次方程可得到或(舍去),進(jìn)而得到數(shù)列的通項(xiàng);(2)已知數(shù)列的類(lèi)型是等差數(shù)列與等比數(shù)列求和的問(wèn)題,根據(jù)等差等比數(shù)列求和公式得到結(jié)果即可.
解:(1)設(shè)為等比數(shù)列的公比,則由,得:
即,解得:或(舍去)
所以的通項(xiàng)公式為
(2) 由 等 差 數(shù) 列 的 通 項(xiàng) 公 式 得 到:
由 等 差 數(shù) 列求 和 公 式 和 等 比 數(shù) 列 前 n 項(xiàng) 和 公 式 得 到
【點(diǎn)睛】
這個(gè)題目考查的是數(shù)列通項(xiàng)公式的求法及數(shù)列求和的常用方法;數(shù)列通項(xiàng)的求法中有常見(jiàn)的已知和的關(guān)系,求表達(dá)式,一般是寫(xiě)出做差得通項(xiàng),但是這種方法需要檢驗(yàn)n=1時(shí)通項(xiàng)公式是否適用;數(shù)列求和常用法有:錯(cuò)位相減,裂項(xiàng)求和,分組求和等。
【題型】解答題
【結(jié)束】
18
【題目】設(shè)a≠b,解關(guān)于x的不等式a2x+b2(1-x)≥[ax+b(1-x)]2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C1的方程為,雙曲線(xiàn)C2的左、右焦點(diǎn)分別是C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求雙曲線(xiàn)C2的方程;
(2)若直線(xiàn)l:y=kx+與雙曲線(xiàn)C2恒有兩個(gè)不同的交點(diǎn)A和B,且,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從1至9這9個(gè)自然數(shù)中任取兩個(gè):
恰有一個(gè)偶數(shù)和恰有一個(gè)奇數(shù);至少有一個(gè)是奇數(shù)和兩個(gè)數(shù)都是奇數(shù);
至多有一個(gè)奇數(shù)和兩個(gè)數(shù)都是奇數(shù);至少有一個(gè)奇數(shù)和至少有一個(gè)偶數(shù).
在上述事件中,是對(duì)立事件的是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿(mǎn)足 是等差數(shù)列,且b1=a1 , b4=a3 .
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若 ,求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)滿(mǎn)足:f( +x)=﹣f( ﹣x),且f( +x)=f( ﹣x),則ω的一個(gè)可能取值是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex﹣1,g(x)=﹣x2+4x﹣3,若存在f(a)=g(b),則實(shí)數(shù)b的取值范圍為( )
A.[1,3]
B.(1,3)
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com