【題目】從1至9這9個自然數(shù)中任取兩個:
恰有一個偶數(shù)和恰有一個奇數(shù);至少有一個是奇數(shù)和兩個數(shù)都是奇數(shù);
至多有一個奇數(shù)和兩個數(shù)都是奇數(shù);至少有一個奇數(shù)和至少有一個偶數(shù).
在上述事件中,是對立事件的是
A. B. C. D.
【答案】C
【解析】
分清互斥事件和對立事件之間的關(guān)系,互斥事件是不可能同時發(fā)生的事件,對立事件是指一個不發(fā)生,另一個一定發(fā)生的時間,然后挨個分析四組事件即可
①恰有一個偶數(shù)和恰有一個奇數(shù),這兩個事件是同一事件;
②至少有一個是奇數(shù)和兩個數(shù)都是奇數(shù)中,至少有一個是奇數(shù)包括了兩個都是奇數(shù)和一個是奇數(shù),包含了兩個數(shù)都是奇數(shù),故不是對立事件
③至多有一個奇數(shù)和兩個數(shù)都是奇數(shù)中,至多有一個奇數(shù)包括有一個是奇數(shù)和沒有一個是奇數(shù),和兩個數(shù)都是奇數(shù)為對立事件;
④至少有一個奇數(shù)和至少有一個偶數(shù)中,都包含一個奇數(shù)和一個偶數(shù)的結(jié)果,故不是對立事件
故選
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣a|+2;
(1)若不等式f(x)<6的解集為(﹣1,3),求a的值;
(2)在(1)的條件下,對任意的x∈R,都有f(x)>t﹣f(﹣x),求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(a為負整數(shù))的圖像經(jīng)過點.
(1)求的解析式;
(2)設(shè)函數(shù),若在上解集非空,求實數(shù)b的取值范圍;
(3)證明:方程有且僅有一個解.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD= ,且點M和N分別為B1C和D1D的中點.
(I)求證:MN∥平面ABCD;
(II)求二面角D1﹣AC﹣B1的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=x﹣1,則不等式f(x)<0的解集為( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣∞,﹣1)∪(1,+∞)
C.(﹣1,1)
D.(﹣1,0)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且 ,數(shù)列{bn}滿足 ,則數(shù)列{anbn}的前n項和Tn= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線的極坐標方程是,以極點為原點,極軸為軸的正半軸建立平面直角坐標系,直線的參數(shù)方程為 (為參數(shù)).
(I)寫出直線的一般方程與曲線的直角坐標方程,并判斷它們的位置關(guān)系;
(II)將曲線向左平移個單位長度,向上平移個單位長度,得到曲線,設(shè)曲線經(jīng)過伸縮變換得到曲線,設(shè)曲線上任一點為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在上的偶函數(shù)滿足, 函數(shù)的圖像是的圖像的一部分. 若關(guān)于的方程有個不同的實數(shù)根, 則實數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E:的焦點在x軸上,拋物線C:與橢圓E交于A,B兩點,直線AB過拋物線的焦點.
(1)求橢圓E的方程和離心率e的值;
(2)已知過點H(2,0)的直線l與拋物線C交于M、N兩點,又過M、N作拋物線C的切線l1,l2,使得l1⊥l2,問這樣的直線l是否存在?若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com