12.在△ABC中,如圖,∠C=90°,AC=6,BC=8,設(shè)直線l與斜邊AB交于點(diǎn)E,與直角邊交于點(diǎn)F.設(shè)AE=x,是否存在直線l同時(shí)平分△ABC的周長和面積?若存在直線l,求出x的值,若不存在直線l,請說明理由.

分析 根據(jù)AE=x得到AF,然后表示三角形AEF的面積,列出兩個(gè)變量之間的關(guān)系式即可得出結(jié)論.

解答 解:在直角三角形ABC中,∠C=90°,AC=6,BC=8,所以AB=10.
∴三角形ABC的周長為24,又因EF平分三角形ABC的周長,
∴AE+AF=12,
而AE=x,
∴AF=12-x
過點(diǎn)E作ED⊥AC于D,
則$\frac{DE}{AE}$=sinA=$\frac{4}{5}$,∴DE=$\frac{4}{5}$x,
∴S△AEF=$\frac{1}{2}×\frac{4}{5}x(12-x)=\frac{1}{2}×6×8$,
∴x2-12x+60=0,方程無解,
∴不存在直線l同時(shí)平分△ABC的周長和面積.

點(diǎn)評(píng) 本題考查了一元二次方程的應(yīng)用及根據(jù)實(shí)際問題列出二次函數(shù)關(guān)系式,解題的關(guān)鍵是根據(jù)已知條件表示出有關(guān)的線段的長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知$\overrightarrow a$=(cosα,sinα),$\overrightarrow b$=(cosβ,sinβ),|$\overrightarrow{a}$-$\overrightarrow b$|=$\frac{{2\sqrt{5}}}{5}$.
(1)求cos(α-β)的值  
(2)若0<α<$\frac{π}{2}$,-$\frac{π}{2}$<β<0,cosβ=$\frac{12}{13}$,求sinα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在平行四邊形ABCD中,AC與BD交于點(diǎn)O,F(xiàn)是線段DC上的點(diǎn).若DC=3DF,設(shè)$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{BD}$=$\overrightarrow$,則$\overrightarrow{AF}$=( 。
A.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$B.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$C.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知直線y=2x+1與曲線y=x3+ax+b相切于點(diǎn)(1,3),則實(shí)數(shù)b的值為( 。
A.1B.-3C.3D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某城市號(hào)召中學(xué)生在今年春節(jié)期間至少參加一次社會(huì)公益活動(dòng)(以下簡稱活動(dòng)).該城市某學(xué)校學(xué)生會(huì)共有12名學(xué)生,他們參加活動(dòng)的次數(shù)統(tǒng)計(jì)如圖所示.
(Ⅰ)從學(xué)生會(huì)中任意選兩名學(xué)生組成一個(gè)小組,若這兩人參加活動(dòng)次數(shù)恰好相等,則稱該小組為“和諧小組”,求任選該校兩名學(xué)生會(huì)成員組成的小組是“和諧小組”的概率;
(Ⅱ)用樣本估計(jì)總體,從該城市的中學(xué)生中任選4個(gè)小組(每小組兩人),求這4個(gè)小組中“和諧小組”的組數(shù)X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知△ABC的內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c,且面積為6,周長為12,cosB=$\frac{3}{5}$,則邊b為( 。
A.3B.4$\sqrt{2}$C.4D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=xex.     
(1)求曲線f(x)在x=1處的切線方程;
(2)求f(x)的單調(diào)區(qū)間與極值.
(3)若方程ex=$\frac{a}{x}$有實(shí)數(shù)解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,四棱錐M-ABCD中,底面ABCD為矩形,MD⊥平面ABCD,且MD=DA=1,E為MA中點(diǎn).
(1)求證:DE⊥MB;
(2)若DC=2,求二面角B-DE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知兩條平行直線l1:$\sqrt{3}$x-y+1=0與l2:$\sqrt{3}$x-y+3=0.
(1)若直線n與l1、l2都垂直,且與坐標(biāo)軸構(gòu)成的三角形的面積是2$\sqrt{3}$,求直線n的方程.
(2)若直線m經(jīng)過點(diǎn)($\sqrt{3}$,4),且被l1、l2所截得的線段長為2,求直線m的方程.

查看答案和解析>>

同步練習(xí)冊答案