分析 (1)證明AC⊥BC,PA⊥BC,推出BC⊥面PAC,根據(jù)面面垂直的判定定理證明平面PAC⊥平面PBC;
(2)根據(jù)線面所成角的定義,先確定∠PCA為直線PC與平面ABC所成角,然后進行求解即可.
解答 解:(1)∵AB是⊙O的直徑,
∴AC⊥BC,
∵PA⊥⊙O所在的平面,
∴PA⊥面ABC
∵BC?面ABC,PA⊥面ABC,
∴PA⊥BC,
∵PA∩AC=A,AC⊥BC,PA⊥BC,
∴BC⊥面PAC,
∵BC⊥面PAC,BC?面PBC,
∴平面PAC⊥平面PBC.
(2)∵PA⊥面ABC,AC?面ABC,
∴AC是PC在底面上的射影,
∴∠PCA為直線PC與平面ABC所成角,
∴直線PC與平面ABC所成角的正切值tan∠PCA=$\frac{PA}{AC}$為直線PC與平面ABC所成角.
∵∠ABC=30°,PA=AB.
∴AC=$\frac{1}{2}$AB=$\frac{1}{2}$PA,
即PA=2AC,
∴tan∠PCA=$\frac{PA}{AC}$=$\frac{2AC}{AC}$=2.
點評 本題主要考查面面垂直的判定和直線和平面所成角的大小,利用面面垂直的判定定理,和線面所成角的求法是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{AC}$ | B. | $\overrightarrow{CA}$ | C. | $\overrightarrow{BD}$ | D. | $\overrightarrow{DB}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-e-$\frac{1}{e}$) | B. | (-∞,e+$\frac{1}{e}$) | C. | (-e-$\frac{1}{e}$,-2) | D. | (-∞,-$\frac{1}{e}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com