【題目】已知向量,其中、,為銳角,的圖象的兩個(gè)相鄰對(duì)稱中心的距離為,且當(dāng)時(shí),取得最大值3.
(1)求的對(duì)稱中心
(2)將的圖象先向下平移1個(gè)單位,再將各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變)得到的圖象,求在的值域.
【答案】(1)對(duì)稱中心為(,1),(k∈Z);(2)[1,2].
【解析】
(1)由數(shù)量積的坐標(biāo)運(yùn)算寫出,利用兩角和的正弦變形,結(jié)合已知及周期公式求得,再由當(dāng)時(shí),取得最大值3求得,則函數(shù)解析式可求,進(jìn)一步求得對(duì)稱中心;
(2)利用平移與伸縮變換求得,由的范圍求得相位的范圍,則函數(shù)值域可求.
解:(1)由已知,
得.
的圖象的兩個(gè)相鄰對(duì)稱中心的距離為,,則,
,則.
又,,且.
,,即.
.
令,得,.
的對(duì)稱中心為,;
(2)由題意可得,,
,,
,即時(shí),;
當(dāng),即時(shí),.
的值域?yàn)?/span>.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】本小題滿分13分)
工作人員需進(jìn)入核電站完成某項(xiàng)具有高輻射危險(xiǎn)的任務(wù),每次只派一個(gè)人進(jìn)去,且每個(gè)人只派一次,工作時(shí)間不超過(guò)10分鐘,如果有一個(gè)人10分鐘內(nèi)不能完成任務(wù)則撤出,再派下一個(gè)人.現(xiàn)在一共只有甲、乙、丙三個(gè)人可派,他們各自能完成任務(wù)的概率分別,假設(shè)互不相等,且假定各人能否完成任務(wù)的事件相互獨(dú)立.
(1)如果按甲在先,乙次之,丙最后的順序派人,求任務(wù)能被完成的概率.若改變?nèi)齻(gè)人被派出的先后順序,任務(wù)能被完成的概率是否發(fā)生變化?
(2)若按某指定順序派人,這三個(gè)人各自能完成任務(wù)的概率依次為,其中是的一個(gè)排列,求所需派出人員數(shù)目的分布列和均值(數(shù)字期望);
(3)假定,試分析以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的均值(數(shù)字期望)達(dá)到最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】越接近高考學(xué)生焦慮程度越強(qiáng),四個(gè)高三學(xué)生中大約有一個(gè)有焦慮癥,經(jīng)有關(guān)機(jī)構(gòu)調(diào)查,得出距離高考周數(shù)與焦慮程度對(duì)應(yīng)的正常值變化情況如下表周數(shù)
周數(shù)x | 6 | 5 | 4 | 3 | 2 | 1. |
正常值y | 55 | 63 | 72 | 80 | 90 | 99 |
其中,,,
(1)作出散點(diǎn)圖;
(2)根據(jù)上表數(shù)據(jù)用最小二乘法求出y關(guān)于x的線性回方程(精確到0.01)
(3)根據(jù)經(jīng)驗(yàn)觀測(cè)值為正常值的0.85~1.06為正常,若1.06~1.12為輕度焦慮,1.12~1.20為中度焦慮,1.20及以上為重度焦慮。若為中度焦慮及以上,則要進(jìn)行心理疏導(dǎo)。若一個(gè)學(xué)生在距高考第二周時(shí)觀測(cè)值為103,則該學(xué)生是否需要進(jìn)行心理疏導(dǎo)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】1852年,英國(guó)來(lái)華傳教士偉烈亞力將《孫子算經(jīng)》中“物不知數(shù)”問(wèn)題的解法傳至歐洲.1874年,英國(guó)數(shù)學(xué)家馬西森指出此法符合1801年由高斯得到的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國(guó)剩余定理”.“中國(guó)剩余定理”講的是一個(gè)關(guān)于整除的問(wèn)題,例如求1到2000這2000個(gè)整數(shù)中,能被3除余1且被7除余1的數(shù)的個(gè)數(shù),現(xiàn)由程序框圖,其中MOD函數(shù)是一個(gè)求余函數(shù),記表示m除以n的余數(shù),例如,則輸出i為( ).
A.98B.97C.96D.95
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直四棱柱的底面ABCD是菱形,,E是上任意一點(diǎn).
(1)求證:平面平面;
(2)設(shè),當(dāng)E為的中點(diǎn)時(shí),求點(diǎn)E到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知右焦點(diǎn)為的橢圓:過(guò)點(diǎn)
(1)求橢圓的方程;
(2)過(guò)點(diǎn)的直線交橢圓于點(diǎn),連接(為坐標(biāo)原點(diǎn))交于點(diǎn),求的面積取得最大值時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的坐標(biāo)系中,曲線C2的方程為(m為常數(shù))
(1)求曲線C1,C2的直角坐標(biāo)方程;
(2)若曲線C1,C2有兩個(gè)交點(diǎn)P、Q,當(dāng)|PQ|時(shí),求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,每個(gè)側(cè)面均為正方形,D為底邊AB的中點(diǎn),E為側(cè)棱的中點(diǎn).
(1)求證:平面;
(2)求證:平面;
(3)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了了解民眾對(duì)開(kāi)展創(chuàng)建文明城市工作以來(lái)的滿意度,隨機(jī)調(diào)查了40名群眾,并將他們隨機(jī)分成A,B兩組,每組20人,A組群眾給第一階段的創(chuàng)文工作評(píng)分,B組群眾給第二階段的創(chuàng)文工作評(píng)分,根據(jù)兩組群眾的評(píng)分繪制了如圖莖葉圖:
根據(jù)莖葉圖比較群眾對(duì)兩個(gè)階段創(chuàng)文工作滿意度評(píng)分的平均值及集中程度不要求計(jì)算出具體值,給出結(jié)論即可;
根據(jù)群眾的評(píng)分將滿意度從低到高分為三個(gè)等級(jí):
滿意度評(píng)分 | 低于70分 | 70分到89分 | 不低于90分 |
滿意度等級(jí) | 不滿意 | 滿意 | 非常滿意 |
由頻率估計(jì)概率,判斷該市開(kāi)展創(chuàng)文工作以來(lái)哪個(gè)階段的民眾滿意率高?說(shuō)明理由.
完成下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為民眾對(duì)兩個(gè)階段創(chuàng)文工作的滿意度存在差異?
低于70分 | 不低于70分 | |
第一階段 | ||
第二階段 |
附:
k |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com