4.己知數(shù)列{an}是等比數(shù)列,b1009是1和3的等差中項,則b1b2017=(  )
A.16B.8C.2D.4

分析 由等差中項求出b1009=2,由此利用等比數(shù)列通項公式能求出b1b2017=${_{1009}}^{2}$的值.

解答 解:∵數(shù)列{an}是等比數(shù)列,b1009是1和3的等差中項,
∴b1009=$\frac{1+3}{2}$=2,
b1b2017=${_{1009}}^{2}$=4.
故選:D.

點評 本題考查等比數(shù)列的兩項積的求法,是基礎(chǔ)題,解題時要認真審題,注意等比數(shù)列、等差中項的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)[x]表示不小于實數(shù)x的最小整數(shù),如[2.6]=3,[-3.5]=-3.已知函數(shù)f(x)=[x]2-2[x],若函數(shù)F(x)=f(x)-k(x-2)+2在(-1,4]上有2個零點,則k的取值范圍是(  )
A.$[{-\frac{5}{2},-1})∪[2,5)$B.$[{-1,-\frac{2}{3}})∪[5,10)$C.$({-\frac{4}{3},-1}]∪[5,10)$D.$[{-\frac{4}{3},-1}]∪[5,10)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若一個圓錐的母線與底面所成的角為$\frac{π}{6}$,體積為125π,則此圓錐的高為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,平行四邊形ABCD的兩條對角線相交于點O,點E、F分別在邊AB、AD上,$\overrightarrow{AE}$=$\frac{5}{7}$$\overrightarrow{AB}$,$\overrightarrow{AF}$=$\frac{1}{4}$$\overrightarrow{AD}$,直線EF交于AC于點K,$\overrightarrow{AK}$=λ$\overrightarrow{AO}$,則λ等于( 。
A.$\frac{8}{27}$B.$\frac{1}{3}$C.$\frac{10}{27}$D.$\frac{11}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知復(fù)數(shù)z=(3a+2i)(b-i)的實部為4,其中a、b為正實數(shù),則2a+b的最小值為( 。
A.2B.4C.$\frac{2\sqrt{3}}{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.以模型y=cekx(e為自然對數(shù)的底)去擬合一組數(shù)據(jù)時,為了求出回歸直線方程,設(shè)z=lny,其變換后得到線性回歸方程為z=0.4x+2,則c=e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.“a≥3${∫}_{0}^{\frac{π}{6}}$cosθdθ”是“直線l:2ax-y+2a2=0(a>0)與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1的右支無交點”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知復(fù)數(shù)z滿足(3-4i)z=1+2i(i為虛數(shù)單位),則z的共軛復(fù)數(shù)是(  )
A.-$\frac{1}{5}-\frac{2}{5}$iB.$-\frac{1}{5}+\frac{2}{5}i$C.$\frac{1}{5}+\frac{2}{5}$iD.$\frac{1}{5}-\frac{2}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)向量$\overrightarrow{AB}=(1,4),\overrightarrow{BC}=(m,-1)$,且$\overrightarrow{AB}⊥\overrightarrow{BC}$,則實數(shù)m的值為( 。
A.-10B.-13C.-7D.4

查看答案和解析>>

同步練習(xí)冊答案