【題目】某地區(qū)2008年至2014年中,每年的居民人均純收入y(單位:千元)的數(shù)據(jù)如下表:

年 份

2008

2009

2010

2011

2012

2013

2014

年份代號(hào)t

1

2

3

4

5

6

7

人均純收入y

2.7

3.6

3.3

4.6

5.4

5.7

6.2

對(duì)變量ty進(jìn)行相關(guān)性檢驗(yàn),得知ty之間具有線性相關(guān)關(guān)系.

(1)求y關(guān)于t的線性回歸方程;

(2)預(yù)測(cè)該地區(qū)2017年的居民人均純收入.

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:

,

【答案】(1)(2)預(yù)測(cè)該地區(qū)2017年的居民人均收入為千元

【解析】試題分析:(1)由公式分別算出,,,,進(jìn)一步算出,,即求出線性回歸方程。(2)2017年的年份代號(hào)代入前面的回歸方程求出、

試題解析:(1)由已知表格的數(shù)據(jù),得

,

,

,

∴y關(guān)于t的線性回歸方程是

(2)由(1),知y關(guān)于t的線性回歸方程是

將2017年的年份代號(hào)代入前面的回歸方程,得

故預(yù)測(cè)該地區(qū)2017年的居民人均收入為千元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,底面,,,的中點(diǎn),為棱的中點(diǎn).

I)證明:平面;

II)已知,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017屆江蘇如東高級(jí)中學(xué)等四校高三12月聯(lián)考】已知數(shù)列滿足,,且對(duì)任意,都有

(1)求,;

(2)設(shè)).

求數(shù)列的通項(xiàng)公式;

設(shè)數(shù)列的前項(xiàng)和,是否存在正整數(shù),,且,使得,成等比數(shù)列?若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn),橢圓的左,右頂點(diǎn)分別為.過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),且的面積是的面積的3倍.

(Ⅰ)求橢圓的方程;

(Ⅱ)若軸垂直,是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn),且滿足,試問(wèn)直線的斜率是否為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在中學(xué)生綜合素質(zhì)評(píng)價(jià)某個(gè)維度的測(cè)評(píng)中,分優(yōu)秀、合格、尚待改進(jìn)三個(gè)等級(jí)進(jìn)行學(xué)生互評(píng).某校高一年級(jí)有男生500人,女生400人,為了了解性別對(duì)該維度測(cè)評(píng)結(jié)果的影響,采用分層抽樣方法從高一年級(jí)抽取了45名學(xué)生的測(cè)評(píng)結(jié)果,并作出頻數(shù)統(tǒng)計(jì)表如下:

1:男生

2:女生

1)從表二的非優(yōu)秀學(xué)生中隨機(jī)選取2人交談,求所選2人中恰有1人測(cè)評(píng)等級(jí)為合格的概率;

2)由表中統(tǒng)計(jì)數(shù)據(jù)填寫下邊2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為測(cè)評(píng)結(jié)果優(yōu)秀與性別有關(guān)

參考數(shù)據(jù)與公式:

K2=,其中n=a+b+c+d

臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A{x|ax23x20}.

(1)A是單元素集合,求集合A;

(2)A中至少有一個(gè)元素,a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù),滿足,實(shí)數(shù),滿足,則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)一位高三班主任對(duì)本班50名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行調(diào)查,得到的統(tǒng)計(jì)數(shù)據(jù)如下表所示:

積極參加班級(jí)工作

不積極參加班級(jí)工作

合計(jì)

學(xué)習(xí)積極性高

18

7

25

學(xué)習(xí)積極性不高

6

19

25

合計(jì)

24

26

50

(1)如果隨機(jī)調(diào)查這個(gè)班的一名學(xué)生,那么抽到不積極參加班級(jí)工作且學(xué)習(xí)積極性不高的學(xué)生的概率是多少?

(2)若不積極參加班級(jí)工作且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取兩名學(xué)生參加某項(xiàng)活動(dòng),問(wèn)兩名學(xué)生中有1名男生的概率是多少?

(3)學(xué)生的學(xué)習(xí)積極性與對(duì)待班極工作的態(tài)度是否有關(guān)系?請(qǐng)說(shuō)明理由.

附:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】大家知道, 莫言是中國(guó)首位獲得諾貝爾獎(jiǎng)的文學(xué)家, 國(guó)人歡欣鼓舞.某高校文學(xué)社從男女生中各抽取名同學(xué)調(diào)查對(duì)莫言作品的了解程度, 結(jié)果如下:

閱讀過(guò)莫言的作品數(shù)(

男生

女生

(1)試估計(jì)該校學(xué)生閱讀莫言作品超過(guò)篇的概率;

(2)對(duì)莫言作品閱讀超過(guò)篇的則稱為對(duì)莫言作品非常了解 否則為 一般了解 .根據(jù)題意完成下表, 并判斷能否在犯錯(cuò)誤的概率不超過(guò)的前提下, 認(rèn)為對(duì)莫言作品非常了解與性別有關(guān)?

非常了解

一般了解

合計(jì)

男生

女生

合計(jì)

附:,其中

查看答案和解析>>

同步練習(xí)冊(cè)答案