【題目】已知實(shí)數(shù),滿足,實(shí)數(shù),滿足,則的最小值為__________.
【答案】1
【解析】由ln(b+1)+a3b=0,得a=3bln(b+1),則點(diǎn)(b,a)是曲線y=3xln(x+1)上的任意一點(diǎn),
由2dc =0,得c=2d ,則點(diǎn)(d,c)是直線y=2x 上的任意一點(diǎn),
因?yàn)?/span>(ac)2+(bd)2表示點(diǎn)(b,a)到點(diǎn)(d,c)的距離的平方,即曲線上的一點(diǎn)與直線上一點(diǎn)的距離的平方,
所以(ac)2+(bd)2的最小值就是曲線上的點(diǎn)到直線距離的最小值的平方,即曲線上與直線y=2x 平行的切線到該直線的距離的平方。
,令y′=2,得x=0,此時(shí)y=0,即過(guò)原點(diǎn)的切線方程為y=2x,
則曲線上的點(diǎn)到直線距離的最小值的平方d2= =1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】心理學(xué)家分析發(fā)現(xiàn)“喜歡空間想象”與“性別”有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證此結(jié)論,從全體組員中按分層抽樣的方法抽取50名同學(xué)(男生30人、女生20人),給每位同學(xué)立體幾何題、代數(shù)題各一道,讓各位同學(xué)自由選擇一道題進(jìn)行解答,選題情況統(tǒng)計(jì)如下表:(單位:人)
立體幾何題 | 代數(shù)題 | 總計(jì) | |
男同學(xué) | 22 | 8 | 30 |
女同學(xué) | 8 | 12 | 20 |
總計(jì) | 30 | 20 | 50 |
(1)能否有97.5%以上的把握認(rèn)為“喜歡空間想象”與“性別”有關(guān)?
(2)經(jīng)統(tǒng)計(jì)得,選擇做立體幾何題的學(xué)生正答率為,且答對(duì)的學(xué)生中男生人數(shù)是女生人數(shù)的5倍,現(xiàn)從選擇做立體幾何題且答錯(cuò)的學(xué)生中任意抽取兩人對(duì)他們的答題情況進(jìn)行研究,求恰好抽到男女生各一人的概率.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2014山東.理15】已知函數(shù),對(duì)函數(shù),定義關(guān)于的對(duì)稱函數(shù)為函數(shù),滿足:對(duì)于任意,兩個(gè)點(diǎn)關(guān)于點(diǎn)對(duì)稱,若是關(guān)于的“對(duì)稱函數(shù)”,且恒成立,則實(shí)數(shù)的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)2008年至2014年中,每年的居民人均純收入y(單位:千元)的數(shù)據(jù)如下表:
年 份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
年份代號(hào)t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.7 | 3.6 | 3.3 | 4.6 | 5.4 | 5.7 | 6.2 |
對(duì)變量t與y進(jìn)行相關(guān)性檢驗(yàn),得知t與y之間具有線性相關(guān)關(guān)系.
(1)求y關(guān)于t的線性回歸方程;
(2)預(yù)測(cè)該地區(qū)2017年的居民人均純收入.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2016高考江蘇卷】現(xiàn)需要設(shè)計(jì)一個(gè)倉(cāng)庫(kù),它由上下兩部分組成,上部分的形狀是正四棱錐,下部分的形狀是正四棱柱(如圖所示),并要求正四棱柱的高的四倍.
(1)若則倉(cāng)庫(kù)的容積是多少?
(2)若正四棱柱的側(cè)棱長(zhǎng)為6m,則當(dāng)為多少時(shí),倉(cāng)庫(kù)的容積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為調(diào)查大學(xué)生這個(gè)微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從武漢市大學(xué)生中隨機(jī)抽取100位同學(xué)進(jìn)行了抽樣調(diào)查,結(jié)果如下:
微信群數(shù)量 | 頻數(shù) | 頻率 |
0至5個(gè) | 0 | 0 |
6至10個(gè) | 30 | 0.3 |
11至15個(gè) | 30 | 0.3 |
16至20個(gè) | a | c |
20個(gè)以上 | 5 | b |
合計(jì) | 100 | 1 |
(Ⅰ)求a,b,c的值;
(Ⅱ)以這100個(gè)人的樣本數(shù)據(jù)估計(jì)武漢市的總體數(shù)據(jù)且以頻率估計(jì)概率,若從全市大學(xué)生(數(shù)量很大)中隨機(jī)抽取3人,記X表示抽到的是微信群個(gè)數(shù)超過(guò)15個(gè)的人數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】.已知函數(shù)f(x)=x2-2x-3,若x∈[t,t+2]時(shí),求函數(shù)f(x)的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=loga(x+3)-1(a>0,a≠1)的圖象恒過(guò)定點(diǎn)A.
(1) 求點(diǎn)A的坐標(biāo);
(2) 若點(diǎn)A在直線mx+ny+1=0上,其中m,n都是正數(shù),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列滿足,為的前項(xiàng)和.證明:對(duì)任意,
(1)當(dāng)時(shí),;
(2)當(dāng)時(shí),;
(3)當(dāng)時(shí),.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com