15.如圖,自圓O外一點(diǎn)P引圓O的切線,切點(diǎn)為A,M為AP的中點(diǎn),過(guò)點(diǎn)M引圓的割線交圓O于B,C兩點(diǎn),且∠BMP=120°,∠BPC=30°,MC=8.
(Ⅰ)求∠MPB的大小;
(Ⅱ)記△MAB和△MCA的面積分別為S△MAB和S△MCA,求$\frac{{{S_{△MAB}}}}{{{S_{△MCA}}}}$.

分析 (Ⅰ)由切割線定理,得MA2=MB•MC,再根據(jù)M為PA的中點(diǎn),將MA換成MP,得到△PMB∽△CMP,從而∠MPB=∠MCP,最后在△CMP中利用內(nèi)角和為180°列式,可得∠MPB的大;
(Ⅱ)證明△MAB~△MCA,可得$\frac{{{S_{△MAB}}}}{{{S_{△MCA}}}}=\frac{{M{A^2}}}{{M{C^2}}}$,即可求$\frac{{{S_{△MAB}}}}{{{S_{△MCA}}}}$.

解答 解:(Ⅰ)∵M(jìn)A是圓O的切線,MC是圓O的割線,∴MA2=MB•MC,
又∵M(jìn)為AP的中點(diǎn),∴MA=MP,
∴MP2=MB•MC,且∠PMB=∠CMP,
∴△PMB~△CMP,∴∠MPB=∠MCP,
又∵∠MPB+∠MCP+∠CMP+∠CPB=180°,
且∠BMP=120°,∠BPC=30°,∴∠MPB=15°.
(Ⅱ)∵M(jìn)A是圓O的切線,∴∠MAB=∠ACM,
∴△MAB~△MCA,
∴$\frac{{{S_{△MAB}}}}{{{S_{△MCA}}}}=\frac{{M{A^2}}}{{M{C^2}}}$,
在△CMP中,MC=8,∠CPM=45°,∠PCM=15°,
由正弦定理得:$MP=4(\sqrt{3}-1)$,∵M(jìn)A=MP,∴$MA=4(\sqrt{3}-1)$,
∴$\frac{{{S_{△MAB}}}}{{{S_{△MCA}}}}=\frac{{M{A^2}}}{{M{C^2}}}=\frac{{{{[4(\sqrt{3}-1)]}^2}}}{8^2}=\frac{{2-\sqrt{3}}}{2}$.

點(diǎn)評(píng) 本題給出圓的切線和割線,在已知兩個(gè)角的度數(shù)情況下求未知角的度數(shù),求$\frac{{{S_{△MAB}}}}{{{S_{△MCA}}}}$.著重考查了三角形的相似、切割線定理和三角形內(nèi)角和定理等知識(shí),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{a+lnx}{x}$,且曲線f(x)在點(diǎn)(e,f(e))處的切線與直線y=e2x+e垂直(其中e為自然對(duì)數(shù)的底數(shù)).
(1)若f(x)在(m,m+1)上單調(diào),求實(shí)數(shù)m的取值范圍;
(2)設(shè)g(x)=(x+1)•f(x),求證:當(dāng)x>1時(shí),g(x)>$\frac{2(e+1){e}^{x}}{e(x{e}^{x}+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在棱長(zhǎng)為2的正方體ABCD-A′B′C′D′中,E、F分別是A′B′和AB的中點(diǎn).求:
(1)異面直線A′F與CE所成的角的大小(結(jié)果用反三角函數(shù)值表示);
(2)直線A′F與平面ABC′D′所成的角的大。ńY(jié)果用反三角函數(shù)值表示);
(3)二面角A-CE-F的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,圓內(nèi)接四邊形ABCD中,BD是圓的直徑,AB=AC,延長(zhǎng)AD與BC的延長(zhǎng)線相交于點(diǎn)E,作EF⊥BD于F.
(1)證明:EC=EF;
(2)如果DC=$\frac{1}{2}$BD=3,試求DE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在極坐標(biāo)系中,曲線C1的極坐標(biāo)方程為ρsin(θ-$\frac{π}{4}$)=$\sqrt{2}$,若以極點(diǎn)為原點(diǎn),極軸所在直線為x軸建立直角坐標(biāo)系,則C1的直角坐標(biāo)方程為y=x+2,;曲線C2在直角坐標(biāo)系中的參數(shù)方程為$\left\{\begin{array}{l}x=2cost\\ y=2+2sint\end{array}$(參數(shù)t∈[-$\frac{π}{2}$,$\frac{π}{2}}$]),則C2的直角坐標(biāo)方程為x2+(y-2)2=4;C1被C2截得的弦長(zhǎng)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,已知AD、BE、CF分別是△ABC三邊的高,H是垂心,AD的延長(zhǎng)線交△ABC的外接圓于點(diǎn)G.
(Ⅰ)求證:∠CHG=∠ABC;
(Ⅱ)求證:AB•GD=AD•HC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,已知:C是以AB為直徑的半圓O上一點(diǎn),CH⊥AB于點(diǎn)H,直線AC與過(guò)B點(diǎn)的切線相交于點(diǎn)D,F(xiàn)為BD中點(diǎn),連接AF交CH于點(diǎn)E,
(Ⅰ)求證:FC是⊙O的切線;
(Ⅱ)若FB=FE,⊙O的半徑為$\sqrt{2}$,求FC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),若函數(shù)y=f(x)的圖象與x軸的任意兩個(gè)相鄰交點(diǎn)間的距離為π,當(dāng)x=$\frac{π}{3}$時(shí),函數(shù)y=f(x)取得最大值2.
(1)求函數(shù)f(x)的解析式,并寫(xiě)出它的單調(diào)增區(qū)間;
(2)若x∈[-$\frac{π}{3}$,$\frac{π}{2}}$],求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+2(a∈R)在x=3時(shí)取得極小值.
(Ⅰ) 求a的值;
(Ⅱ) 當(dāng)x∈[-2,4]時(shí),求f(x)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案