分析 過(guò)A作BC的高交BC于H,高為h,CH設(shè)為x,tanC=$\frac{h}{x}$,tanB=$\frac{h}{20-x}$,可得:$\frac{h}{x}•\frac{h}{20-x}=\frac{1}{4}$,${h}^{2}+{x}^{2}=(4\sqrt{2})^{2}$求出h和x.確定C的大。糜嘞叶ɡ砬蠼釧B,在求cosA的值.
解答 解:由BC=a=20,AC=b=4$\sqrt{2}$,
過(guò)A作BC的高交BC于H,高為h,CH設(shè)為x
tanC=$\frac{h}{x}$,
tanB=$\frac{h}{20-x}$
可得:$\frac{h}{x}•\frac{h}{20-x}=\frac{1}{4}$
${h}^{2}+{x}^{2}=(4\sqrt{2})^{2}$
解得:x=h=4.
∴C=45°.
由余弦定理cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$,
可得:$\frac{\sqrt{2}}{2}$×$2×20×4\sqrt{2}$=400+32-c2.
解得:c=4$\sqrt{17}$.
那么:cosA=$\frac{{c}^{2}+^{2}-{a}^{2}}{2bc}$=$-\frac{3\sqrt{34}}{34}$.
故答案為:$-\frac{3\sqrt{34}}{34}$.
點(diǎn)評(píng) 本題考查三角形的正余弦定理和內(nèi)角和定理的運(yùn)用,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2k+1 | B. | 2k+2 | C. | (2k+1)+(2k+2) | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8π | B. | 12π | C. | 8$\sqrt{3}$π | D. | 12$\sqrt{3}$π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com