A. | 順時(shí)針旋轉(zhuǎn)60°所得 | B. | 順時(shí)針旋轉(zhuǎn)120°所得 | ||
C. | 逆時(shí)針旋轉(zhuǎn)60°所得 | D. | 逆時(shí)針旋轉(zhuǎn)120°所得 |
分析 向量表示已知向量,利用向量旋轉(zhuǎn)公式求解即可.
解答 解:平面向量(1,1)=$\sqrt{2}$(cos45°,sin45°).
令平面向量($\frac{1-\sqrt{3}}{2}$,$\frac{1+\sqrt{3}}{2}$)=$\sqrt{2}$(cosθ,sinθ).
可得cosθ=$\frac{\sqrt{2}-\sqrt{6}}{4}$,sinθ=$\frac{\sqrt{2}+\sqrt{6}}{4}$,
θ=105°.
105°-45°=60°.
平面向量($\frac{1-\sqrt{3}}{2}$,$\frac{1+\sqrt{3}}{2}$)是將向量(1,1)經(jīng)過(guò)逆時(shí)針旋轉(zhuǎn)60°所得變換得到的.
故選:C.
點(diǎn)評(píng) 本題考查向量的坐標(biāo)運(yùn)算,向量的旋轉(zhuǎn)變換,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①④ | B. | ④ | C. | ②③⑤ | D. | ⑤ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題“?x∈R使得x2+x+1<0”的否定是“?x∈R均有x2+x+1<0” | |
B. | 若p為真命題,q為假命題,則(¬p)∨q為真命題 | |
C. | 為了了解高考前高三學(xué)生每天的學(xué)習(xí)時(shí)間,現(xiàn)要用系統(tǒng)抽樣的方法從某班50個(gè)學(xué)生中抽取一個(gè)容量為10的樣本,已知50個(gè)學(xué)生的編號(hào)為1,2,3…50,若8號(hào)被選出,則18號(hào)也會(huì)被選出 | |
D. | 已知m、n是兩條不同直線,α、β是兩個(gè)不同平面,α∩β=m,則“n?α,n⊥m”是“α⊥β”的充分條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{7}}}{7}$ | B. | $\frac{{2\sqrt{7}}}{7}$ | C. | $\frac{{\sqrt{7}}}{14}$ | D. | $\frac{{5\sqrt{7}}}{14}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-2,$\sqrt{2}$] | B. | [-$\sqrt{2}$,2] | C. | [-2,-$\sqrt{2}$] | D. | (-2,-$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com