設(shè)拋物線C1:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,焦點(diǎn)為F2,以F1,F(xiàn)2為焦點(diǎn),離心率為
12
的橢圓C2與拋物線C1的一個(gè)交點(diǎn)為P.
(1)若橢圓的長(zhǎng)半軸長(zhǎng)為2,求拋物線方程;
(2)在(1)的條件下,直線l經(jīng)過(guò)橢圓C2的右焦點(diǎn)F2,與拋物線C1交于A1,A2兩點(diǎn),如果|A1A2|等于△PF1F2的周長(zhǎng),求l的斜率;
(3)是否存在實(shí)數(shù)m,使得△PF1F2的邊長(zhǎng)是連續(xù)的自然數(shù)?若存在,求出m的值,若不存在,說(shuō)明理由.
分析:(1)由橢圓C2的離心率為
1
2
,長(zhǎng)半軸長(zhǎng)為2,即可求出a,b,c的值,進(jìn)而求出拋物線交點(diǎn)坐標(biāo),拋物線方程也就能求出.
(2)在(1)的條件下,可求出橢圓方程,這樣,焦點(diǎn)三角形△PF1F2的周長(zhǎng)可知,也即|A1A2|.再利用弦長(zhǎng)公式即可.
(3)先假設(shè)存在實(shí)數(shù)m,使得△PF1F2的邊長(zhǎng)是連續(xù)的自然數(shù),因?yàn)橹虚g線段長(zhǎng)度為2m,所以,最短線段長(zhǎng)度為2m-1,再用拋物線定義即可求出.
解答:解:(1)∵橢圓C2的離心率為
1
2
,長(zhǎng)半軸長(zhǎng)為2,∴
3

∵物線C1:y2=4mx(m>0)的焦點(diǎn)為橢圓右焦點(diǎn),∴
p
2
=1,∴拋物線方程y2=4x
(2)由(1)可知,橢圓方程為
x2
4
y2
3
= 1
,所以△PF1F2的周長(zhǎng)為2a+2c=6.
①當(dāng)直線l斜率存在時(shí),設(shè)直線方程為y=k(x-1),代入y2=4x,得k2x2-(2k2+4)x+k2=0,
∴x1+x2=2+
4
k2
,x1x2=1,
∴|A1A2|=
1+k2
|x1-x2|
=
4
k4
+
8
k2
-5=0,解得,k=±
2

②當(dāng)直線l斜率不存在時(shí),A1點(diǎn)坐標(biāo)為(1,
3
2
)A2(1,-
3
2
),∴|A1A2|=2
3
≠6,不成立.
綜上,直線l的斜率為±
2

(3)由題意可知,橢圓中c=m.橢圓C2離心率為
1
2
,∴a=2c.
∴橢圓方程為
x2
4m2
+
y2
3m2
= 1
由,
x2
4m2
+
y2
3m2
= 1
y2=4mx
得P點(diǎn)橫坐標(biāo)為
2
3
m
,在橢圓中,|PF1|+|PF2|=2a=4m,
|F1F2|=2m,∴|PF2|,|F1F2|,|PF1|成等差數(shù)列,
假設(shè)存在實(shí)數(shù)m,使得△PF1F2的邊長(zhǎng)是連續(xù)的自然數(shù),則PF2|=|F1F2|-1=2m-1,又因?yàn)镻在拋物線上,
∴|F1F2|=
2
3
m
+m,∴m=3
點(diǎn)評(píng):本題考查了橢圓,拋物線,與直線的位置關(guān)系,綜合性強(qiáng),做題時(shí)認(rèn)真觀察,找出切入點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,設(shè)拋物線C1:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,焦點(diǎn)為F2;以F1,F(xiàn)2為焦點(diǎn),離心率e=
12
的橢圓C2與拋物線C1在x軸上方的交點(diǎn)為P.
(1)當(dāng)m=1時(shí),求橢圓C2的方程;
(2)當(dāng)△PF1F2的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù)時(shí),求拋物線方程;此時(shí)設(shè)⊙C1、⊙C2…⊙Cn是圓心在y2=4mx(m>0)上的一系列圓,它們的圓心縱坐標(biāo)分別為a1,a2…an,已知a1=6,a1>a2>…>an>0,又⊙Ck(k=1,2,…,n)都與y軸相切,且順次逐個(gè)相鄰?fù)馇,求?shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,設(shè)拋物線C1:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,焦點(diǎn)為F2;以F1,F(xiàn)2為焦點(diǎn),離心率e=
12
的橢圓C2與拋物線C1在x軸上方的交點(diǎn)為P,延長(zhǎng)PF2交拋物線于點(diǎn)Q,M是拋物線C1上一動(dòng)點(diǎn),且M在P與Q之間運(yùn)動(dòng).
(1)當(dāng)m=1時(shí),求橢圓C2的方程;
(2)當(dāng)△PF1F2的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù)時(shí),求△MPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)拋物線C1:y2=4mx(m>0)的準(zhǔn)線與x軸交于點(diǎn)F1,焦點(diǎn)為F2;以F1,F(xiàn)2為焦點(diǎn),離心率為
1
2
的橢圓C2與拋物線C1在x軸上方的交點(diǎn)為P,延長(zhǎng)PF2交拋物線于點(diǎn)Q,M是拋物線C1上一動(dòng)點(diǎn),且M在P與Q之間運(yùn)動(dòng).
(1)當(dāng)m=3時(shí),求橢圓C2的標(biāo)準(zhǔn)方程;
(2)若|PF2|=5且P點(diǎn)橫坐標(biāo)為
2
3
m
,求面積△MPQ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,設(shè)拋物線C1:y2=4mx(m>0)的焦點(diǎn)為F2,且其準(zhǔn)線與x軸交于F1,以F1,F(xiàn)2為焦點(diǎn),離心率e=
12
的橢圓C2與拋物線C1在x軸上方的一個(gè)交點(diǎn)為P.
(1)當(dāng)m=1時(shí),求橢圓C2的方程;
(2)是否存在實(shí)數(shù)m,使得△PF1F2的三條邊的邊長(zhǎng)是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù)m;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案