【題目】如圖,四邊形是矩形,沿對角線將折起,使得點(diǎn)在平面上的射影恰好落在邊上.
(1)求證:平面平面;
(2)當(dāng)時,求二面角的余弦值.
【答案】(I)見解析;(II).
【解析】試題分析:(1)先證明. 結(jié)合,得平面,又平面,
所以平面平面.
(2)以點(diǎn)為原點(diǎn),線段所在的直線為軸,線段所在的直線為軸,建立空間直角坐標(biāo)系,用向量法求解即可.
試題解析:(1)設(shè)點(diǎn)在平面上的射影為點(diǎn),連接
則平面,所以.
因?yàn)樗倪呅?/span>是矩形,所以,所以平面,
所以.
又,所以平面,而平面,
所以平面平面.
(2)方法1:在矩形中,過點(diǎn)作的垂線,垂足為,連結(jié).
因?yàn)?/span>平面 ,又DM∩DE=D
所以平面 ,
所以為二面角的平面角.
設(shè),則.
在中,易求出, .
在中, ,
所以.
方法2:以點(diǎn)為原點(diǎn),線段所在的直線為軸,線段所在的直線為軸,建立空間直角坐標(biāo)系,如圖所示.
設(shè),則,所以, .
由(I)知,又,所以°,°,那么, , ,
所以,所以, .
設(shè)平面的一個法向量為,則即
取,則, ,所以.
因?yàn)槠矫?/span>的一個法向量為,
所以.
所以求二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,點(diǎn)E在AB上,AE=2EB=2,且DE⊥AB.以DE為折痕把△ADE折起,使點(diǎn)A到達(dá)點(diǎn)F的位置,且∠FEB=60°.
(1)求證:平面BFC⊥平面BCDE;
(2)若直線DF與平面BCDE所成角的正切值為,求二面角E﹣DF﹣C的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)曲線與直線交于點(diǎn),點(diǎn)的坐標(biāo)為(3,1),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,隨著“霧霾”天出現(xiàn)的越來越頻繁,很多人為了自己的健康,外出時選擇戴口罩,長郡中學(xué)高三興趣研究小組利用暑假空閑期間做了一項(xiàng)對人們霧霾天外出時是否戴口罩的調(diào)查,共調(diào)查了120人,其中女性70人,男性50人,并根據(jù)統(tǒng)計數(shù)據(jù)畫出等高條形圖如圖所示:
(Ⅰ)利用圖形判斷性別與霧霾天外出戴口罩是否有關(guān)系;
(Ⅱ)根據(jù)統(tǒng)計數(shù)據(jù)建立一個列聯(lián)表;
(Ⅲ)能否在犯錯誤的概率不超過0.05的前提下認(rèn)為性別與霧霾天外出戴口罩有關(guān)系.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】金秋九月,丹桂飄香,某高校迎來了一大批優(yōu)秀的學(xué)生.新生接待其實(shí)也是和社會溝通的一個平臺.校團(tuán)委、學(xué)生會從在校學(xué)生中隨機(jī)抽取了160名學(xué)生,對是否愿意投入到新生接待工作進(jìn)行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:
愿意 | 不愿意 | |
男生 | 60 | 20 |
女士 | 40 | 40 |
(1)根據(jù)上表說明,能否有99%把握認(rèn)為愿意參加新生接待工作與性別有關(guān);
(2)現(xiàn)從參與問卷調(diào)查且愿意參加新生接待工作的學(xué)生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機(jī)選取3人到火車站迎接新生,設(shè)選取的3人中女生人數(shù)為,寫出的分布列,并求.
附:,其中.
0.05 | 0.01 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】扇形AOB中心角為,所在圓半徑為,它按如圖(Ⅰ)(Ⅱ)兩種方式有內(nèi)接矩形CDEF.
(1)矩形CDEF的頂點(diǎn)C、D在扇形的半徑OB上,頂點(diǎn)E在圓弧AB上,頂點(diǎn)F在半徑OA上,設(shè);
(2)點(diǎn)M是圓弧AB的中點(diǎn),矩形CDEF的頂點(diǎn)D、E在圓弧AB上,且關(guān)于直線OM對稱,頂點(diǎn)C、F分別在半徑OB、OA上,設(shè);
試研究(1)(2)兩種方式下矩形面積的最大值,并說明兩種方式下哪一種矩形面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在黨中央的正確指導(dǎo)下,通過全國人民的齊心協(xié)力,特別是全體一線醫(yī)護(hù)人員的奮力救治,二月份“新冠肺炎”疫情得到了控制.下圖是國家衛(wèi)健委給出的全國疫情通報,甲、乙兩個省份從2月7日到2月13日一周的新增“新冠肺炎”確診人數(shù)的折線圖如下:
根據(jù)圖中甲、乙兩省的數(shù)字特征進(jìn)行比對,通過比較把你得到最重要的兩個結(jié)論寫在答案紙指定的空白處.
①_________________________________________________.
②_________________________________________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“中國剩余定理”又稱“孫子定理”.1852年,英國來華傳教士偉烈亞力將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲.1874年,英國數(shù)學(xué)家馬西森指出此法符合1801年由高斯得到的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”.“中國剩余定理”講的是一個關(guān)于整除的問題,現(xiàn)有這樣一個整除問題:將1到2019這2019個數(shù)中,能被3除余2且被5整除余2的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列,則此數(shù)列所有項(xiàng)中,中間項(xiàng)的值為( 。
A.992B.1022C.1007D.1037
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)試討論的單調(diào)性;
(2)若函數(shù)在定義域上有兩個極值點(diǎn),試問:是否存在實(shí)數(shù),使得?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com