17.下列函數(shù)中,既在(-∞,0)∪(0,+∞)上是偶函數(shù),又在(-∞,0)上單調(diào)遞減的是( 。
A.y=-x2B.y=x-1C.y=-exD.y=ln|x|

分析 根據(jù)題意,依次分析選項(xiàng)中函數(shù)的奇偶性與單調(diào)性,綜合即可得答案.

解答 解:根據(jù)題意,依次分析選項(xiàng):
對(duì)于A、y=-x2,為二次函數(shù),在區(qū)間(-∞,0)單調(diào)遞增,不符合題意;
對(duì)于B、y=x-1=$\frac{1}{x}$,為反比例函數(shù),在(-∞,0)∪(0,+∞)上為奇函數(shù),不符合題意;
對(duì)于C、y=-ex,為非奇非偶函數(shù),不符合題意;
對(duì)于D、y=ln|x|,f(-x)=ln|-x|=lnx=f(x),為偶函數(shù),在(-∞,0)上,f(x)=ln(-x),為減函數(shù),符合題意;
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)奇偶性、單調(diào)性的判定,注意掌握常見(jiàn)函數(shù)的奇偶性、單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an+1-2an}是公比為2的等比數(shù)列,其中a1=1,a2=4.
(1)證明:數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$}是等差數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn;
(3)記Cn=$\frac{2{a}_{n}-2n}{n}$(n≥2),證明:$\frac{1}{2}-$($\frac{1}{2}$)n<$\frac{1}{{c}_{2}}+\frac{1}{{c}_{3}}$+…+$\frac{1}{{c}_{n}}$≤1-($\frac{1}{2}$)n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)函數(shù)f(x)=-$\frac{\sqrt{3}}{2}$sinx$-\frac{1}{2}$cosx+1
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)若x∈[0,$\frac{π}{2}$],且f(x)=$\frac{1}{3}$,求cosx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知在($\frac{x}{2}$$-\frac{1}{\root{5}{x}}$)n的展開(kāi)式中,第6項(xiàng)為常數(shù)項(xiàng),則n=( 。
A.9B.8C.7D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=x2+bx+c的圖象過(guò)點(diǎn)(-1,3),且關(guān)于直線x=1對(duì)稱
(Ⅰ)求f(x)的解析式;
(Ⅱ)若m<3,求函數(shù)f(x)在區(qū)間[m,3]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+5,x≥0}\\{x+5,x<0}\end{array}\right.$.
(1)求f(f(-2))的值;
(2)解不等式f(x)>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,直角梯形ABCD與等邊△ABE所在的平面互相垂直,AB∥CD,AB⊥BC,AB=2CD=AD=2,F(xiàn)為線段EA上的點(diǎn),且EA=3EF.
(I)求證:EC∥平面FBD
(Ⅱ)求多面體EFBCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知i為虛數(shù)單位,復(fù)數(shù)z1=1-i,z2=1+ai,若z1•z2是純虛數(shù),則實(shí)數(shù)a的值為( 。
A.1B.-1C.±1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)經(jīng)過(guò)點(diǎn)(0,1),且離心率為$\frac{{\sqrt{3}}}{2}$
(Ⅰ)求橢圓C 的方程;
(Ⅱ)直線l1,l2 都過(guò)點(diǎn)H(0,m)(m≠0),分別與x 軸相交于D,E,其中D 為OE 的中點(diǎn)(O 為坐標(biāo)原點(diǎn)).直線l1 與圓x2+y2=$\frac{1}{2}$ 相切,直線l2 與橢圓C 相交于M,N,
求證:△OMN 的面積為定值;
(Ⅲ)在(Ⅱ)的條件下,設(shè)P 為M,N 中點(diǎn),Q 是橢圓上的點(diǎn),$\overrightarrow{OP}=λ\overrightarrow{OQ}$ (λ>0 ),求λ 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案