精英家教網 > 高中數學 > 題目詳情

【題目】下列說法正確的有_____________(填序號);

①有一個面是多邊形,其余各面都是三角形,由這些面所圍成的幾何體是棱錐;

②正四面體的棱都相等;

③平行直線的平行投影仍是平行直線;

④由斜二測畫法得到的平面圖形直觀圖的面積是原圖形面積的.

【答案】②④

【解析】

根據多面體的概念,直線的位置關系,斜二測畫法的概念分別進行判斷.

正八面體的各個面都是三角形,但它不是棱錐,①錯;

正四面體的各面都是正三角形,所有棱都相等,②正確;

要看投影方向,平行直線的平行投影可以是平行直線,也可能重合,還可能是兩點.③錯;

以水平放置的平行四邊形為例,平行四邊形底為,高為,面積為,斜二測畫法的直觀圖中,底不變仍然為,高變成與底成的線段,且長度為原來的一半,即為,因此直觀圖中的高為,面積為,即,④正確.

故答案為:②④.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的中心在原點,直線與坐標軸的交點是橢圓的兩個頂點.

(1)求橢圓的方程;

(2)若是橢圓上的兩點,且滿足,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司共有10條產品生產線,不超過5條生產線正常工作時,每條生產線每天純利潤為1100元,超過5條生產線正確工作時,超過的生產線每條純利潤為800元,原生產線利潤保持不變.未開工的生產線每條每天的保養(yǎng)等各種費用共100元.用x表示每天正常工作的生產線條數,用y表示公司每天的純利潤.

(I)寫出y關于x的函數關系式,并求出純利潤為7700元時工作的生產線條數.

(II)為保證新開的生產線正常工作,需對新開的生產線進行檢測,現從該生產線上隨機抽取100件產品,測量產品數據,用統(tǒng)計方法得到樣本的平均數,標準差,繪制如圖所示的頻率分布直方圖,以頻率值作為概率估計值.為檢測該生產線生產狀況,現從加工的產品中任意抽取一件,記其數據為X,依據以下不等式評判(P表示對應事件的概率)

評判規(guī)則為:若至少滿足以上兩個不等式,則生產狀況為優(yōu),無需檢修;否則需檢修生產線.試判斷該生產線是否需要檢修.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有一塊半圓形的空地,直徑米,政府計劃在空地上建一個形狀為等腰梯形的花圃,如圖所示,其中為圓心,,在半圓上,其余為綠化部分,設.

1)記花圃的面積為,求的最大值;

2)若花圃的造價為10/,在花圃的邊、處鋪設具有美化效果的灌溉管道,鋪設費用為500/米,兩腰、不鋪設,求滿足什么條件時,會使總造價最大.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若不等式的解集為,求實數的值;

(2)在(1)的條件下,若存在實數使成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來,共享單車已經悄然進入了廣大市民的日常生活,并慢慢改變了人們的出行方式.為了更好地服務民眾,某共享單車公司在其官方中設置了用戶評價反饋系統(tǒng),以了解用戶對車輛狀況和優(yōu)惠活動的評價.現從評價系統(tǒng)中選出條較為詳細的評價信息進行統(tǒng)計,車輛狀況的優(yōu)惠活動評價的列聯(lián)表如下:

對優(yōu)惠活動好評

對優(yōu)惠活動不滿意

合計

對車輛狀況好評

對車輛狀況不滿意

合計

(1)能否在犯錯誤的概率不超過的前提下認為優(yōu)惠活動好評與車輛狀況好評之間有關系?

(2)為了回饋用戶,公司通過向用戶隨機派送騎行券.用戶可以將騎行券用于騎行付費,也可以通過轉贈給好友.某用戶共獲得了張騎行券,其中只有張是一元券.現該用戶從這張騎行券中隨機選取張轉贈給好友,求選取的張中至少有張是一元券的概率.

參考數據:

參考公式:,其中.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在三棱錐中,底面,,,的中點,是線段上的一點,且,連接,,.

(1)求證:平面;

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系,將曲線上的每一個點的橫坐標保持不變,縱坐標縮短為原來的,得到曲線,以坐標原點為極點, 軸的正半軸為極軸,建立極坐標系, 的極坐標方程為

(Ⅰ)求曲線的參數方程;

(Ⅱ)過原點且關于軸對稱的兩條直線分別交曲線、、,且點在第一象限,當四邊形的周長最大時,求直線的普通方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】建設生態(tài)文明,是關系人民福祉,關乎民族未來的長遠大計.某市通宵營業(yè)的大型商場,為響應節(jié)能減排的號召,在氣溫超過時,才開放中央空調降溫,否則關閉中央空調.如圖是該市夏季一天的氣溫(單位:)隨時間(,單位:小時)的大致變化曲線,若該曲線近似的滿足函數關系.

(1)求函數的表達式;

(2)請根據(1)的結論,判斷該商場的中央空調應在本天內何時開啟?何時關閉?

查看答案和解析>>

同步練習冊答案