已知函數(shù)f(x)=-x2+2x+3在區(qū)間(-∞,m]上是增函數(shù),求實數(shù)m的值.
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:求出函數(shù)的對稱軸,利用二次函數(shù)的性質(zhì),即可求出m的值.
解答: 解:函數(shù)f(x)=-x2+2x+3的對稱軸為x=1,開口向下,
函數(shù)f(x)=-x2+2x+3在區(qū)間(-∞,m]上是增函數(shù),
所以m=1.
實數(shù)m的值:1.
點評:本題考查二次函數(shù)的性質(zhì)的應(yīng)用,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

乒乓球賽規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對方再連續(xù)發(fā)球2次,依次輪換,每次發(fā)球,勝方得1分,負方得0分.設(shè)在甲、乙的比賽中,每次發(fā)球,發(fā)球方得1分的概率為
3
5
,各次發(fā)球的勝負結(jié)果相互獨立,甲、乙的一局比賽中,甲先發(fā)球.
(Ⅰ)求開始第4次發(fā)球時,甲、乙的比分為1比2的概率;
(Ⅱ)ξ表示開始第4次發(fā)球時乙的得分,求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,點D是BC的中點.
(1)求證:A1B∥平面ADC1;
(2)若AB=AC,BC=AA1=2,求點A1到平面ADC1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(x-a)+1,(a>0且a≠1)恒過定點(3,1).
(Ⅰ)求實數(shù)a的值;
(Ⅱ)設(shè)函數(shù)h(x)=ax+1,函數(shù)F(x)=[h(x)+2]2的圖象恒在函數(shù)G(x)=h(2x)+m+2的上方,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=xlnx.
(1)求這個函數(shù)的導(dǎo)數(shù);
(2)求這個函數(shù)的圖象在點x=e處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個正四面體中,第一個球是它的內(nèi)切球,第二個球是它的外接球,求這兩個球的表面積之比及體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,要測量山高EF,把測量儀器放到點B處得到數(shù)據(jù)∠FAQ=75°,點E位于點B的北偏東60°方向上,從點B沿北偏東75°方向前行30m到達點D,利用儀器測得點E在點D的北偏西60°方向上,求山高EF.(已知儀器高2m)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2-2lnx,a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知點P(0,1)和函數(shù)f(x)圖象上動點M(m,f(m)),對任意m∈[1,e],直線PM傾斜角都是鈍角,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程sin2x=cos2x,則方程在(π,2π)的解為
 

查看答案和解析>>

同步練習(xí)冊答案