13.已知集合A={-4,2,-1,5},B={x|y=$\sqrt{x+2}$},則A∩B中元素的個數(shù)為( 。
A.1B.2C.3D.4

分析 求出B中x的范圍,找出A與B的交集,即可作出判斷.

解答 解:由題意可知B={x|x≥-2},
因為集合A={-4,2,-1,5},
所以A∩B={-1,2,5}.
則集合A∩B中元素的個數(shù)為3個
故選C.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.對某兩名高三學生在連續(xù)9次數(shù)學測試中的成績(單位:分)進行統(tǒng)計得到如下折線圖.下面關于這兩位同學的數(shù)學成績的分析中,正確的共有( 。﹤.

①甲同學的成績折線圖具有較好的對稱性,與正態(tài)曲線相近,故而平均成績?yōu)?30分;
②根據(jù)甲同學成績折線圖提供的數(shù)據(jù)進行統(tǒng)計,估計該同學平均成績在區(qū)間[110,120]內(nèi);
③乙同學的數(shù)學成績與考試次號具有比較明顯的線性相關性,且為正相關;
④乙同學在這連續(xù)九次測驗中的最高分與最低分的差超過40分.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設函數(shù)f(x)=axlnx+be-x,曲線y=f(x)在(1,f(1))處的切線方程為y=(1+e-1)x-1-2e-1
(1)求a,b;
(2)求證:f(x)>-1-2e-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.復數(shù)z=$\frac{2}{1-i}$(i為虛數(shù)單位),則( 。
A.z的實部為2B.z的虛部為iC.$\overline z$=1+iD.|z|=$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=a•$\frac{lnx-x+2}{x}$
(I)若函數(shù)f(x)在點(1,f(x))處的切線過點(0,4),求函數(shù)f(x)的最大值
(Ⅱ)當a<l時,若函數(shù)g(x)=xf(x)+x2-2x+2在區(qū)間($\frac{1}{2}$,2)內(nèi)有且只有一個零點,求實數(shù)a的取值范圍.(參考數(shù)值:ln2≈0.7)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知圓C的圓心在直線2x+y-1=0上,且經(jīng)過原點和點(-1,-5),則圓C的方程為(x-2)2+(y+3)2=13.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知i是虛數(shù)單位,若(a-2i)•i=b-i(a,b∈R),則a2+b2=( 。
A.0B.2C.5D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)f(x)=$\frac{1}{2}$sin2x+$\frac{{\sqrt{3}}}{2}$cos2x,x∈R,將函數(shù)f(x)的圖象向右平移$\frac{π}{3}$個單位長度,得到函數(shù)g(x)的圖象,則g(x)在區(qū)間$[-\frac{π}{6},\frac{π}{3}]$上的最小值為( 。
A.0B.$-\frac{{\sqrt{3}}}{2}$C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{2}$,過橢圓的左焦點F1且與x軸垂直的直線與橢圓相交于P,Q兩點,△OPQ的面積為$\frac{{\sqrt{3}}}{2}$,O為坐標原點.
(Ⅰ)求橢圓E的方程;
(Ⅱ)點M、N為橢圓E上不同的兩點,kOM•kON=-$\frac{b^2}{a^2}$,求證:△OMN的面積為定值.

查看答案和解析>>

同步練習冊答案