(12分)圓、橢圓、雙曲線都有對稱中心,統(tǒng)稱為有心圓錐曲線,它們統(tǒng)一的標準方程為.圓的很多優(yōu)美性質可以類比推廣到有心圓錐曲線中,如圓的“垂徑定理”的逆定理:圓的平分弦(不是直徑)的直徑垂直于弦. 類比推廣到有心圓錐曲線:已知直線與曲線:交于兩點,的中點為,若直線和(為坐標原點)的斜率都存在,則.這個性質稱為有心圓錐曲線的“垂徑定理”.
(Ⅰ)證明有心圓錐曲線的“垂徑定理”;
(Ⅱ)利用有心圓錐曲線的“垂徑定理”解答下列問題:
① 過點作直線與橢圓交于兩點,求的中點的軌跡的方程;
② 過點作直線與有心圓錐曲線交于兩點,是否存在這樣的直線使點為線段的中點?若存在,求直線的方程;若不存在,說明理由.
科目:高中數學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
x2 |
a2 |
y2 |
b2 |
b2 |
a2 |
x2 |
a2 |
y2 |
b2 |
b2 |
a2 |
查看答案和解析>>
科目:高中數學 來源:不詳 題型:填空題
x2 |
a2 |
y2 |
b2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分12分)有對稱中心的曲線叫有心曲線,如圓、橢圓、雙曲線都是有心曲線,過有心曲線的中心的弦叫有心曲線的直徑,有心曲線有許多類似的優(yōu)美性質。
(1)定理:過圓上異于直徑兩端點的任意一點與直徑兩端點的連線斜率之積為定值.試寫出該定理在橢圓中的類似結論;
(2)定理:圓的兩條互相垂直的直徑稱為共軛直徑,且這兩條共軛直徑與圓相交得到的四邊形的面積為定值.在橢圓中兩條斜率之積為的直徑稱為共軛直徑,試探究橢圓中兩條共軛直徑與橢圓相交得到的四邊形的面積的類似結論,并加以證明.
查看答案和解析>>
科目:高中數學 來源:2009-2010學年湖南省長沙市長郡中學高二(上)期中數學試卷(解析版) 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com