【題目】定義:直線關(guān)于圓的圓心距單位圓心到直線的距離與圓的半徑之比.

1)設(shè)圓,求過點的直線關(guān)于圓的圓心距單位的直線方程.

2)若圓軸相切于點,且直線關(guān)于圓的圓心距單位,求此圓的方程.

3)是否存在點,使過點的任意兩條互相垂直的直線分別關(guān)于相應(yīng)兩圓的圓心距單位始終相等?若存在,求出相應(yīng)的點坐標;若不存在,請說明理由.

【答案】1;(2;(3)存在,.

【解析】

1)設(shè)過的直線方程為,求得已知圓的圓心和半徑,由新定義,可得方程,求得,即可得到所求直線方程;

2)設(shè)圓的方程為,由題意可得,①②,③,解方程可得,,進而得到所求圓的方程;

3)假設(shè)存在點,設(shè)過的兩直線為,求得兩圓的圓心和半徑,由新定義可得方程,化簡整理可得,或,再由恒成立思想可得,的方程,解方程可得的坐標.

解:(1)設(shè)過的直線方程為,

的圓心為,半徑為1,

由題意可得

解得,

即有所求直線為;

2)設(shè)圓的方程為,

由題意可得,①

②,

解方程可得,,,或,,

則圓的方程為;

3)假設(shè)存在點,設(shè)過的兩直線為

,又的圓心為,半徑為1,

的圓心為,半徑為2

由題意可得,

化簡可得,或,

即有,

解得

則存在這樣的點,使得使過的任意兩條互相垂直的直線

分別關(guān)于相應(yīng)兩圓的距離比始終相等.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),為常數(shù),且.

1)證明函數(shù)的圖象關(guān)于直線對稱;

2)當時,討論方程解的個數(shù);

3)若滿足,但,則稱為函數(shù)的二階周期點,則是否有兩個二階周期點,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)

1)當時,fx)的最小值是_____;

2)若f0)是fx)的最小值,則a的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的左右頂點分別為.直線和兩條漸近線交于點,點在第一象限且,是雙曲線上的任意一點.

(1)求雙曲線的標準方程;

(2)是否存在點P使得為直角三角形?若存在,求出點P的個數(shù);

(3)直線與直線分別交于點,證明:以為直徑的圓必過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在上的函數(shù),記,的最大值為.若存在,滿足,則稱一次函數(shù)的“逼近函數(shù)”,此時的稱為上的“逼近確界”.

(1)驗證:的“逼近函數(shù)”;

(2)已知.若的“逼近函數(shù)”,求的值;

(3)已知的逼近確界為,求證:對任意常數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.

1)求的普通方程和的直角坐標方程;

2)直線軸的交點為,經(jīng)過點的直線與曲線交于兩點,若,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)是數(shù)列的前n項和,對任意都有,(其中k、b、p都是常數(shù)).

1)當、時,求;

2)當、時,若,求數(shù)列的通項公式;

3)若數(shù)列中任意(不同)兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列是封閉數(shù)列。當、時,.試問:是否存在這樣的封閉數(shù)列.使得對任意.都有,且.若存在,求數(shù)列的首項的所有取值的集合;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】黃岡“一票通”景區(qū)旅游年卡,是由黃岡市旅游局策劃,黃岡市大別山旅游公司推出的一項惠民工程,持有旅游年卡一年內(nèi)可不限次暢游全市19家簽約景區(qū).為了解市民每年旅游消費支出情況單位:百元,相關(guān)部門對已游覽某簽約景區(qū)的游客進行隨機問卷調(diào)查,并把得到的數(shù)據(jù)列成如表所示的頻數(shù)分布表:

組別

頻數(shù)

10

390

400

188

12

求所得樣本的中位數(shù)精確到百元;

根據(jù)樣本數(shù)據(jù),可近似地認為市民的旅游費用支出服從正態(tài)分布,若該市總?cè)丝跒?/span>750萬人,試估計有多少市民每年旅游費用支出在7500元以上;

若年旅游消費支出在百元以上的游客一年內(nèi)會繼續(xù)來該景點游玩現(xiàn)從游客中隨機抽取3人,一年內(nèi)繼續(xù)來該景點游玩記2分,不來該景點游玩記1分,將上述調(diào)查所得的頻率視為概率,且游客之間的選擇意愿相互獨立,記總得分為隨機變量X,求X的分布列與數(shù)學期望.

參考數(shù)據(jù):;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,過點且斜率為 的直線和以橢圓的右頂點為圓心,短半軸為半徑的圓相切.

1)求橢圓的方程;

(2)橢圓的左、右頂點分為AB,過右焦點的直線l交橢圓于P,Q兩點,求四邊形APBQ面積的最大值.

查看答案和解析>>

同步練習冊答案