6.已知函數(shù)f(x)=m-|x-1|,(m>0),且f(x+1)≥0的解集為[-3,3].
(Ⅰ)求m的值;
(Ⅱ)若正實(shí)數(shù)a,b,c滿足$\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}=m$,求證:a+2b+3c≥3.

分析 (Ⅰ)f(x+1)≥0等價(jià)于|x|≤m,求出解集,利用f(x+1)≥0的解集為[-3,3],求m的值;
(Ⅱ)由(Ⅰ)知$\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}=3$,利用柯西不等式即可證明.

解答 (Ⅰ)解:因?yàn)閒(x+1)=m-|x|,
所以f(x+1)≥0等價(jià)于|x|≤m,
由|x|≤m,得解集為[-m,m],(m>0)
又由f(x+1)≥0的解集為[-3,3],故m=3.
(Ⅱ)證明:由(Ⅰ)知$\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}=3$,
又∵a,b,c是正實(shí)數(shù),
∴a+2b+3c=$\frac{1}{3}(a+2b+3c)(\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c})$$≥\frac{1}{3}{(\sqrt{a•\frac{1}{a}}+\sqrt{2b•\frac{1}{2b}}+\sqrt{3c•\frac{1}{3c}})^2}=3$.
當(dāng)且僅當(dāng)$a=1,b=\frac{1}{2},c=\frac{1}{3}$時(shí)等號(hào)成立,
所以a+2b+3c≥3.

點(diǎn)評(píng) 本題考查不等式的解法,考查柯西不等式的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F(-1,0),且經(jīng)過點(diǎn)(1,$\frac{3}{2}$).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知橢圓的弦AB過點(diǎn)F,且與x軸不垂直.若D為x軸上的一點(diǎn),DA=DB,求$\frac{AB}{DF}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)x1、x2、x3、x4為自然數(shù)1、2、3、4的一個(gè)全排列,且滿足|x1-1|+|x2-2|+|x3-3|+|x4-4|=6,則這樣的排列有9個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$e=\frac{{\sqrt{3}}}{2}$,頂點(diǎn)為A1、A2、B1、B2,且$\overrightarrow{{A_1}{B_1}}•\overrightarrow{{A_1}{B_2}}=3$.
(1)求橢圓C的方程;
(2)P是橢圓C上除頂點(diǎn)外的任意點(diǎn),直線B2P交x軸于點(diǎn)Q,直線A1B2交A2P于點(diǎn)E.設(shè)A2P的斜率為k,EQ的斜率為m,試問2m-k是否為定值?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=(x+1)21n(x+1)-x.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)當(dāng)x≥0時(shí),f(x)≥ax2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=asinx+ln(1-x).
(1)若a=1,求f(x)在x=0處的切線方程;
(2)若f(x)在區(qū)間[0,1)上單調(diào)遞減,求a的取值范圍;
(3)求證:e${\;}^{sin\frac{1}{(1+1)^{2}}+sin\frac{1}{(2+1)^{2}}+…+sin\frac{1}{(n+1)^{2}}}$<2,(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某市對(duì)大學(xué)生畢業(yè)后自主創(chuàng)業(yè)人員給予小額貸款補(bǔ)貼,貸款期限分為6個(gè)月、12個(gè)月、18個(gè)月、24個(gè)月、36個(gè)月五種,對(duì)于這五種期限的貸款政府分別補(bǔ)貼200元、300元、300元、400元、400元,從2016年享受此項(xiàng)政策的自主創(chuàng)業(yè)人員中抽取了100人進(jìn)行調(diào)查統(tǒng)計(jì),選取貸款期限的頻數(shù)如表:
 貸款期限  6個(gè)月  12個(gè)月  18個(gè)月  24個(gè)月  36個(gè)月
 頻數(shù) 20 40 20 10 10
以上表中各種貸款期限的頻數(shù)作為2017年自主創(chuàng)業(yè)人員選擇各種貸款期限的概率.
(Ⅰ)某大學(xué)2017年畢業(yè)生中共有3人準(zhǔn)備申報(bào)此項(xiàng)貸款,計(jì)算其中恰有兩人選擇貸款期限為12個(gè)月的概率;
(Ⅱ)設(shè)給某享受此項(xiàng)政策的自主創(chuàng)業(yè)人員補(bǔ)貼為X元,寫出X的分布列;該市政府要做預(yù)算,若預(yù)計(jì)2017年全市有600人申報(bào)此項(xiàng)貸款,則估計(jì)2017年該市共要補(bǔ)貼多少萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某翻譯公司為提升員工業(yè)務(wù)能力,為員工開設(shè)了英語、法語、西班牙語和德語四個(gè)語種的培訓(xùn)過程,要求每名員工參加且只參加其中兩種.無論如何安排,都有至少5名員工參加的培訓(xùn)完全相同.問該公司至少有多少名員工?( 。
A.17B.21C.25D.29

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某電子產(chǎn)品公司前四年的年宣傳費(fèi)x(單位:千萬元)與年銷售量y(單位:百萬部)的數(shù)據(jù)如下表所示:
x(單位:千萬元) 1 2 3 4
 y(單位:百萬部) 3 5 69
可以求y關(guān)于x的線性回歸方程為$\stackrel{∧}{y}$=1.9x+1.
(1)該公司下一年準(zhǔn)備投入10千萬元的宣傳費(fèi),根據(jù)所求得的回歸方程預(yù)測下一年的銷售量m:
(2)根據(jù)下表所示五個(gè)散點(diǎn)數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$.
 x(單位:千萬元) 1 2 3 4 10
 y(單位:百萬部) 3 6 9m
并利用小二乘法的原理說明$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$與$\stackrel{∧}{y}$=1.9x+1的關(guān)系.
參考公式:回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中斜率和截距的最小二乘法估計(jì)公式分別為:
$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

同步練習(xí)冊答案