P是雙曲線右支上一點(不同于頂點),A、B為左、右焦點,則=   
【答案】分析:作 PH⊥AB,H為垂足,則 sin∠PBA=,sin∠PAB=,面積法求得sin∠APB=,故==,利用雙曲線的定義可得答案.
解答:解:作 PH⊥AB,H為垂足,則 sin∠PBA=,sin∠PAB=
AB•PH=PA•PBsin∠APB,∴sin∠APB=,
=====,
故答案為
點評:本題考查雙曲線的定義和標準方程,以及雙曲線的簡單性質(zhì)的應用,求得sin∠PBA=,sin∠PAB=,sin∠APB=,是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的左右焦點是F1,F(xiàn)2,設P是雙曲線右支上一點,
F1F2
F1P
上的投影的大小恰好為|
F1P
|
且它們的夾角為
π
6
,則雙曲線的離心率e為(  )
A、
2
+1
2
B、
3
+1
2
C、
3
+1
D、
2
+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的中心在原點O,右焦點為F(c,0),P是雙曲線右支上一點,且△OEP的面積為
6
2
.

(Ⅰ)若點P的坐標為(2,
3
)
,求此雙曲線的離心率;
(Ⅱ)若
OF
FP
=(
6
3
-1)c2
,當|
OP
|
取得最小值時,求此雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左右焦點F1,F(xiàn)2,P是雙曲線右支上一點,
F1F2
F1P
上投影的大小恰好為|
F1P
|
,且它們夾角為
π
6
,則雙曲線離心率e是
3
+1
3
+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的左右焦點是F1,F(xiàn)2,設P是雙曲線右支上一點,
F1F2
F1P
上的投影的大小恰好為|
F1P
|
且它們的夾角為
π
6
,則雙曲線的離心率e為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點分別是F1,F(xiàn)2,設P是雙曲線右支上一點,
F1F2
F1P
上的投影的大小恰好為|
F1P
|,且它們的夾角為arccos
4
5
,則雙曲線的漸近線方程為
 

查看答案和解析>>

同步練習冊答案