12.已知?jiǎng)狱c(diǎn)P(x,y)滿足:$\left\{\begin{array}{l}{2x+y≤4}\\{x≥0}\\{(\sqrt{{x}^{2}+1}-x)(\sqrt{{y}^{2}+1}+y)≥1}\end{array}\right.$,則x2+y2-6x的最小值為$-\frac{40}{9}$.

分析 不等式組中的第三個(gè)不等式可化為x≤y,作出該不等式組表示的平面區(qū)域,x2+y2-6x的幾何意義求最小值.

解答 解:由$(\sqrt{{x}^{2}+1}-x)(\sqrt{{y}^{2}+1}+y)≥1$,
∵y+$\sqrt{{y}^{2}+1}$>y+|y|≥0,
∴$\sqrt{{x}^{2}+1}-x≥\frac{1}{\sqrt{{y}^{2}+1}+y}=\sqrt{{y}^{2}+1}-y$,
∵函數(shù)f(x)=$\sqrt{{x}^{2}+1}-x=\frac{1}{\sqrt{{x}^{2}+1}+x}$是減函數(shù),
∴x≤y,
∴原不等式組化為$\left\{\begin{array}{l}{2x+y≤4}\\{x≥0}\\{x≤y}\end{array}\right.$.
該不等式組表示的平面區(qū)域如下圖:
∵x2+y2-6x=(x-3)2+y2-9.
由點(diǎn)到直線的距離公式可得,P(3,0)區(qū)域中A($\frac{4}{3},\frac{4}{3}$)的距離最小,所以x2+y2-6x的最小值為$-\frac{40}{9}$.
故答案為:-$\frac{40}{9}$.

點(diǎn)評 考查不等式組表示的平面區(qū)域的概念,能夠畫出不等式組所表示的平面區(qū)域,能判斷函數(shù)的單調(diào)性,圓的標(biāo)準(zhǔn)方程,利用線性規(guī)劃的知識(shí)求最值的方法,數(shù)形結(jié)合解題的方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.以點(diǎn)M(2,0)、N(0,4)為直徑的圓的標(biāo)準(zhǔn)方程為(x-1)2+(y-2)2=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知等比數(shù)列{an}的公比q,前n項(xiàng)的和Sn,對任意的n∈N*,Sn>0恒成立,則公比q的取值范圍是(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知${(1+x)^{10}}={a_0}+{a_1}(1-x)+{a_2}{(1-x)^2}+…+{a_{10}}{(1-x)^{10}}$,則a9等于( 。
A.-10B.10C.-20D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知定義域?yàn)椋?∞,+∞)的偶函數(shù)f(x)的一個(gè)單調(diào)遞增區(qū)間是(2,6),關(guān)于函數(shù)y=f(2-x)
①一個(gè)遞減區(qū)間是(4,8)
②一個(gè)遞增區(qū)間是(4,8)
③其圖象對稱軸方程為x=2      
④其圖象對稱軸方程為x=-2
其中正確的序號(hào)是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)集合A={1,2,3},B={y|y=x-1,x∈A},則A∪B等于(  )
A.{1,2}B.{2,3}C.{0,1,2,3}D.{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}y≥0\\ y≤x\\ y≤-2x+9\end{array}\right.$,則z=x+3y的最大值等于( 。
A.0B.$\frac{9}{2}$C.12D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC,B=$\frac{π}{3}$,BC=2,點(diǎn)D在邊AB上,AD=DC,DE⊥AC,E為垂足,ED=$\frac{\sqrt{6}}{2}$,則角A=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=log2x+x的零點(diǎn)所在的一個(gè)區(qū)間是( 。
A.(0,$\frac{1}{4}$)B.($\frac{1}{4}$,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,2)

查看答案和解析>>

同步練習(xí)冊答案