【題目】(必須列式,不能只寫(xiě)答案,答案用數(shù)字表示)有4個(gè)不同的球,四個(gè)不同的盒子,把球全部放入盒內(nèi).
(1)求共有多少種放法;
(2)求恰有一個(gè)盒子不放球,有多少種放法;
(3)求恰有兩個(gè)盒內(nèi)不放球,有多少種放法;
【答案】(1)256 (2)144 (3)84
【解析】
試題分析:(1)直接利用分步計(jì)數(shù)原理求解即可;(2)“恰有一個(gè)盒內(nèi)放2球”與“恰有一個(gè)盒子不放球”是一回事,通過(guò)小球分組然后求解即可;(3)四個(gè)不同的球全部放入4個(gè)不同的盒子內(nèi),恰有兩個(gè)盒子不放球的不同放法的求法,分為兩步來(lái)求解,先把四個(gè)球分為兩組,再取兩個(gè)盒子,作全排列,由于四個(gè)球分兩組有兩種分法,一種是2,2,另一種是3,1,故此題分為兩類(lèi)來(lái)求解,再求出它們的和
試題解析:(1)一個(gè)球一個(gè)球地放到盒子里去,每只球都可有4種獨(dú)立的放法,由分步乘法計(jì)數(shù)原理,放法共有:44=256種.
(2)“恰有一個(gè)盒內(nèi)放2球”與“恰有一個(gè)盒子不放球”是一回事.
選擇一個(gè)盒子放2個(gè)球,有,選擇2個(gè)盒子各放一個(gè)球的方法數(shù):,
共有方法數(shù):=144種放法.
(3)四個(gè)球分為兩組有兩種分法,(2,2),(3,1)
若兩組每組有兩個(gè)球,不同的分法有=3種,恰有兩個(gè)盒子不放球的不同放法是3×=36種,
若兩組一組為3,一組為1個(gè)球,不同分法有=4種恰有兩個(gè)盒子不放球的不同放法是4×=48種,
綜上恰有兩個(gè)盒子不放球的不同放法是36+48=84種
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在銳角△ABC中,兩向量p=(2-2sin A,cos A+sin A),q=(sin A-cos A,1+sin A),且p與q是共線向量.
(1)求A的大小;
(2)求函數(shù)y=2sin2B+cos()取最大值時(shí),角B的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的對(duì)稱(chēng)軸為,.
(1)求函數(shù)的最小值及取得最小值時(shí)的值;
(2)試確定的取值范圍,使至少有一個(gè)實(shí)根;
(3)若,存在實(shí)數(shù),對(duì)任意,使恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】水培植物需要一種植物專(zhuān)用營(yíng)養(yǎng)液.已知每投放(且)個(gè)單位的營(yíng)養(yǎng)液,它在水中釋放的濃度(克/升)隨著時(shí)間(天)變化的函數(shù)關(guān)系式近似為,其中,若多次投放,則某一時(shí)刻水中的營(yíng)養(yǎng)液濃度為每次投放的營(yíng)養(yǎng)液在相應(yīng)時(shí)刻所釋放的濃度之和,根據(jù)經(jīng)驗(yàn),當(dāng)水中營(yíng)養(yǎng)液的濃度不低于4(克/升)時(shí),它才能有效.
(1)若只投放一次4個(gè)單位的營(yíng)養(yǎng)液,則有效時(shí)間可能達(dá)幾天?
(2)若先投放2個(gè)單位的營(yíng)養(yǎng)液,3天后投放個(gè)單位的營(yíng)養(yǎng)液.要使接下來(lái)的2天中,營(yíng)養(yǎng)液能夠持續(xù)有效,試求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,,側(cè)面是邊長(zhǎng)為2的等邊三角形,點(diǎn)是的中點(diǎn),且平面平面.
(I)求異面直線與所成角的余弦值;
(II)若點(diǎn)在線段上移動(dòng),是否存在點(diǎn)使平面與平面所成的角為?若存在,指出點(diǎn)的位置,否則說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生身高情況,某校以10%的比例對(duì)全校700名學(xué)生按性別進(jìn)行分層抽樣調(diào)查,測(cè)得身高情況的統(tǒng)計(jì)圖如下:
(1)估計(jì)該校男生的人數(shù);
(2)估計(jì)該校學(xué)生身高在170~185cm之間的概率;
(3)從樣本中身高在180~190cm之間的男生中任選2人,求至少有1人身高在185~190cm之間的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)俄羅斯新羅西斯克2015年5月17日電 記者吳敏、鄭文達(dá)報(bào)道:當(dāng)?shù)貢r(shí)間17日,參加中俄“海上聯(lián)合-2015(Ⅰ)”軍事演習(xí)的9艘艦艇抵達(dá)地中海預(yù)定海域,混編組成海上聯(lián)合集群.接到命令后我軍在港口M要將一件重要物品用小艇送到一艘正在航行的俄軍輪船上,在小艇出發(fā)時(shí),輪船位于港口M北偏西30°且與該港口相距20海里的A處,并正以30海里/小時(shí)的航行速度沿正東方向勻速行駛.假設(shè)該小艇沿直線方向以v海里/小時(shí)的航行速度勻速行駛,經(jīng)過(guò)t小時(shí)與輪船相遇.
(1)若希望相遇時(shí)小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
(2)為保證小艇在30分鐘內(nèi)(含30分鐘)能與輪船相遇,試確定小艇航行速度的最小值并說(shuō)明你的推理過(guò)程;
(3)是否存在v,使得小艇以v海里/小時(shí)的航行速度行駛,總能有兩種不同的航行方向與輪船相遇?若存在,試確定v的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論的單調(diào)性;
(2)若對(duì)任意的,恒有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面,底面是直角梯形,,是上的點(diǎn).
(1)求證: 平面平面;
(2)若是的中點(diǎn),且二面角的余弦值為,求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com